[1] Fortier T, Baumann E. 20 years of developments in optical frequency comb technology and applications[J]. Communications Physics, 2, 1-16(2019).
[2] Wang W Q. Study on Kerr optical frequency comb based on micro-ring resonator[D], 1-11(2018).
[3] Diddams S A. The evolving optical frequency comb[J]. Journal of the Optical Society of America B, 27, B51-B62(2010).
[4] Zhao X, Yang J J, Zhang L Q et al. Single-cavity dual-comb technology[J]. Chinese Journal of Lasers, 49, 1901003(2022).
[5] Parriaux A, Hammani K, Millot G. Electro-optic frequency combs[J]. Advances in Optics and Photonics, 12, 223-287(2020).
[6] Chang L, Liu S T, Bowers J E. Integrated optical frequency comb technologies[J]. Nature Photonics, 16, 95-108(2022).
[7] Pasquazi A, Peccianti M, Razzari L et al. Micro-combs: a novel generation of optical sources[J]. Physics Reports, 729, 1-81(2018).
[8] Del’Haye P, Schliesser A, Arcizet O et al. Optical frequency comb generation from a monolithic microresonator[J]. Nature, 450, 1214-1217(2007).
[9] Zhang X L, Zhao Y J. Research progress of microresonator-based optical frequency combs[J]. Acta Optica Sinica, 41, 0823014(2021).
[10] Del’Haye P, Herr T, Gavartin E et al. Octave spanning tunable frequency comb from a microresonator[J]. Physical Review Letters, 107, 063901(2011).
[11] Zhang C, Zhu H L, Liang S et al. Monolithically integrated 10-channel multi-wavelength light sources[J]. Chinese Journal of Lasers, 40, 1202001(2013).
[12] Dutt A, Joshi C, Ji X C et al. On-chip dual-comb source for spectroscopy[J]. Science Advances, 4, e1701858(2018).
[13] Shu H W, Chang L, Tao Y S et al. Microcomb-driven silicon photonic systems[J]. Nature, 605, 457-463(2022).
[14] Lucas E, Brochard P, Bouchand R et al. Ultralow-noise photonic microwave synthesis using a soliton microcomb-based transfer oscillator[J]. Nature Communications, 11, 374(2020).
[15] Dai J, Li X M, Liu A N et al. Low phase noise microwave signal generation based on soliton frequency comb in MgF2 microresonator[J]. Acta Optica Sinica, 42, 2007001(2022).
[16] Dutt A, Luke K, Manipatruni S et al. On-chip optical squeezing[J]. Physical Review Applied, 3, 044005(2015).
[17] Yang Z J, Jahanbozorgi M, Jeong D et al. A squeezed quantum microcomb on a chip[J]. Nature Communications, 12, 1-8(2021).
[18] Imany P, Jaramillo-Villegas J A, Odele O D et al. 50-GHz-spaced comb of high-dimensional frequency-bin entangled photons from an on-chip silicon nitride microresonator[J]. Optics Express, 26, 1825-1840(2018).
[19] Kues M, Reimer C, Lukens J M et al. Quantum optical microcombs[J]. Nature Photonics, 13, 170-179(2019).
[20] Liu J Q, Huang G H, Wang R N et al. High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits[J]. Nature communications, 12, 1-9(2021).
[22] Lu H H, Myilswamy K V, Bennink R S et al. Bayesian tomography of high-dimensional on-chip biphoton frequency combs with randomized measurements[J]. Nature Communications, 13, 1-12(2022).
[23] Chembo Y K, Menyuk C R. Spatiotemporal Lugiato-Lefever formalism for Kerr-comb generation in whispering-gallery-mode resonators[J]. Physical Review A, 87, 053852(2013).
[24] Hansson T, Wabnitz S. Frequency comb generation beyond the Lugiato-Lefever equation: multi-stability and super cavity solitons[J]. Journal of the Optical Society of America B, 32, 1259-1266(2015).
[25] Lau R K W, Lamont M R E, Okawachi Y et al. Effects of multiphoton absorption on parametric comb generation in silicon microresonators[J]. Optics Letters, 40, 2778-2781(2015).
[26] Chembo Y K. Quantum dynamics of Kerr optical frequency combs below and above threshold: spontaneous four-wave mixing, entanglement, and squeezed states of light[J]. Physical Review A, 93, 033820(2016).
[27] Godey C, Balakireva I V, Coillet A et al. Stability analysis of the spatiotemporal Lugiato-Lefever model for Kerr optical frequency combs in the anomalous and normal dispersion regimes[J]. Physical Review A, 89, 063814(2014).
[28] Coillet A, Chembo Y K. Routes to spatiotemporal chaos in Kerr optical frequency combs[J]. Chaos, 24, 013113(2014).
[29] Zhou H, Geng Y, Cui W W et al. Soliton bursts and deterministic dissipative Kerr soliton generation in auxiliary-assisted microcavities[J]. Light: Science & Applications, 8, 1-10(2019).
[30] Joshi C, Jang J K, Luke K et al. Thermally controlled comb generation and soliton modelocking in microresonators[J]. Optics Letters, 41, 2565-2568(2016).
[31] Carmon T, Yang L, Vahala K J. Dynamical thermal behavior and thermal self-stability of microcavities[J]. Optics express, 12, 4742-4750(2004).