[1] Abbe E. Beiträge zur theorie des mikroskops und der mikroskopischen wahrnehmung[J]. Archiv für Mikroskopische Anatomie, 9, 413-468(1873).
[2] Rayleigh L. XII. On the manufacture and theory of diffraction-gratings[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 47, 81-93(1874).
[3] Betzig E, Patterson G H, Sougrat R et al. Imaging intracellular fluorescent proteins at nanometer resolution[J]. Science, 313, 1642-1645(2006).
[4] Hess S T, Girirajan T P K, Mason M D. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy[J]. Biophysical Journal, 91, 4258-4272(2006).
[5] Rust M J, Bates M, Zhuang X W. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)[J]. Nature Methods, 3, 793-796(2006).
[6] Hell S W, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy[J]. Optics Letters, 19, 780-782(1994).
[7] Klar T A, Jakobs S, Dyba M et al. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission[J]. Proceedings of the National Academy of Sciences of the United States of America, 97, 8206-8210(2000).
[8] Gustafsson M G L. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy[J]. Journal of Microscopy, 198, 82-87(2000).
[9] Gustafsson M G L. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution[J]. Proceedings of the National Academy of Sciences of the United States of America, 102, 13081-13086(2005).
[10] Dertinger T, Colyer R, Iyer G et al. Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI)[J]. Proceedings of the National Academy of Sciences of the United States of America, 106, 22287-22292(2009).
[11] Gustafsson N, Culley S, Ashdown G et al. Fast live-cell conventional fluorophore nanoscopy with ImageJ through super-resolution radial fluctuations[J]. Nature Communications, 7, 12471(2016).
[12] Balzarotti F, Eilers Y, Gwosch K C et al. Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes[J]. Science, 355, 606-612(2017).
[13] Sun D E, Fan X Q, Shi Y J et al. Click-ExM enables expansion microscopy for all biomolecules[J]. Nature Methods, 18, 107-113(2021).
[14] Akimov A V, Mukherjee A, Yu C L et al. Generation of single optical plasmons in metallic nanowires coupled to quantum dots[J]. Nature, 450, 402-406(2007).
[15] Pompa P P, Martiradonna L, Torre A D et al. Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control[J]. Nature Nanotechnology, 1, 126-130(2006).
[16] Ganesh N, Zhang W, Mathias P C et al. Enhanced fluorescence emission from quantum dots on a photonic crystal surface[J]. Nature Nanotechnology, 2, 515-520(2007).
[17] Jayachandraiah C, Siva Kumar K, Krishnaiah G et al. Influence of Dy dopant on structural and photoluminescence of Dy-doped ZnO nanoparticles[J]. Journal of Alloys and Compounds, 623, 248-254(2015).
[18] Gu F, Wang S F, Lü M K et al. Structure evaluation and highly enhanced luminescence of Dy3+-doped ZnO nanocrystals by Li+ doping via combustion method[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 20, 3528-3531(2004).
[19] Wang Z B, Guo W, Li L et al. Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope[J]. Nature Communications, 2, 218(2011).
[20] Heifetz A, Kong S C, Sahakian A V et al. Photonic nanojets[J]. Journal of Computational and Theoretical Nanoscience, 6, 1979-1992(2009).
[21] Zhu J L, Goddard L L. All-dielectric concentration of electromagnetic fields at the nanoscale: the role of photonic nanojets[J]. Nanoscale Advances, 1, 4615-4643(2019).
[22] Zhang Q Q, Li J J, Pan X Y et al. Low-numerical aperture microscope objective boosted by liquid-immersed dielectric microspheres for quantum dot-based digital immunoassays[J]. Analytical Chemistry, 93, 12848-12853(2021).
[23] Darafsheh A, Guardiola C, Palovcak A et al. Optical super-resolution imaging by high-index microspheres embedded in elastomers[J]. Optics Letters, 40, 5-8(2015).
[24] Hao X, Kuang C F, Liu X et al. Microsphere based microscope with optical super-resolution capability[J]. Applied Physics Letters, 99, 203102(2011).
[25] Darafsheh A, Walsh G F, dal Negro L et al. Optical super-resolution by high-index liquid-immersed microspheres[J]. Applied Physics Letters, 101, 141128(2012).
[26] Lee S, Li L, Wang Z B et al. Immersed transparent microsphere magnifying sub-diffraction-limited objects[J]. Applied Optics, 52, 7265-7270(2013).
[27] Xu W, Yuan Q, Gao Z S et al. Review of microsphere optical microscopy for super-resolution imaging and metrology[J]. Journal of Applied Optics, 40, 1139-1151(2019).
[28] Darafsheh A. Influence of the background medium on imaging performance of microsphere-assisted super-resolution microscopy[J]. Optics Letters, 42, 735-738(2017).
[29] Darafsheh A, Limberopoulos N I, Derov J S et al. Advantages of microsphere-assisted super-resolution imaging technique over solid immersion lens and confocal microscopies[J]. Applied Physics Letters, 104, 061117(2014).
[30] Lee S, Li L. Rapid super-resolution imaging of sub-surface nanostructures beyond diffraction limit by high refractive index microsphere optical nanoscopy[J]. Optics Communications, 334, 253-257(2015).
[31] Lee S, Li L, Ben-Aryeh Y et al. Overcoming the diffraction limit induced by microsphere optical nanoscopy[J]. Journal of Optics, 15, 125710(2013).
[32] Li L, Guo W, Yan Y Z et al. Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy[J]. Light: Science & Applications, 2, e104(2013).
[33] Yan Y Z, Li L, Feng C et al. Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum[J]. ACS Nano, 8, 1809-1816(2014).
[34] Li Y C, Liu X S, Li B J. Single-cell biomagnifier for optical nanoscopes and nanotweezers[J]. Light: Science & Applications, 8, 61(2019).
[35] Yang H, Moullan N, Auwerx J et al. Super-resolution biological microscopy using virtual imaging by a microsphere nanoscope[J]. Small, 10, 1712-1718(2014).
[36] Wang F F, Liu L Q, Yu H B et al. Scanning superlens microscopy for non-invasive large field-of-view visible light nanoscale imaging[J]. Nature Communications, 7, 13748(2016).
[37] Bezryadina A, Li J X, Zhao J X et al. Localized plasmonic structured illumination microscopy with an optically trapped microlens[J]. Nanoscale, 9, 14907-14912(2017).
[38] Chen L W, Zhou Y, Li Y et al. Microsphere enhanced optical imaging and patterning: from physics to applications[J]. Applied Physics Reviews, 6, 021304(2019).
[39] Chen L W, Zhou Y, Wu M X et al. Remote-mode microsphere nano-imaging: new boundaries for optical microscopes[J]. Opto-Electronic Advances, 1, 170001(2018).
[40] Hao X, Yang Q, Kuang C F et al. Optical super-resolution imaging based on frequency shift[J]. Acta Optica Sinica, 41, 0111001(2021).
[41] Hao X, Kuang C F, Li Y H et al. Evanescent-wave-induced frequency shift for optical superresolution imaging[J]. Optics Letters, 38, 2455-2458(2013).
[42] Yang S L, Ye Y H, Shi Q F et al. Converting evanescent waves into propagating waves: the super-resolution mechanism in microsphere-assisted microscopy[J]. The Journal of Physical Chemistry C, 124, 25951-25956(2020).
[43] Chen Z G, Taflove A, Backman V. Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique[J]. Optics Express, 12, 1214-1220(2004).
[44] Yang H, Trouillon R, Huszka G et al. Super-resolution imaging of a dielectric microsphere is governed by the waist of its photonic nanojet[J]. Nano Letters, 16, 4862-4870(2016).
[45] Li L Q, Davis L M. Rapid and efficient detection of single chromophore molecules in aqueous solution[J]. Applied Optics, 34, 3208-3217(1995).
[46] Mathis H P, Kalusche G, Wagner B et al. Steps towards spatially resolved single molecule detection in solution[J]. Bioimaging, 5, 116-128(1997).
[47] Gérard D, Wenger J, Devilez A et al. Strong electromagnetic confinement near dielectric microspheres to enhance single-molecule fluorescence[J]. Optics Express, 16, 15297-15303(2008).
[48] Gérard D, Devilez A, Aouani H et al. Efficient excitation and collection of single-molecule fluorescence close to a dielectric microsphere[J]. Journal of the Optical Society of America B, 26, 1473-1478(2009).
[49] Yan Y Z, Zeng Y, Wu Y et al. Ten-fold enhancement of ZnO thin film ultraviolet-luminescence by dielectric microsphere arrays[J]. Optics Express, 22, 23552-23564(2014).
[50] Yang L X, Yan Y Z, Wang Q et al. Sandwich-structure-modulated photoluminescence enhancement of wide bandgap semiconductors capping with dielectric microsphere arrays[J]. Optics Express, 25, 6000-6014(2017).
[51] Yang L X, Li L, Wang Q et al. Over 1000-fold enhancement of the unidirectional photoluminescence from a microsphere-cavity-array-capped QD/PDMS composite film for flexible lighting and displays[J]. Advanced Optical Materials, 7, 1901228(2019).
[52] Hill S C, Boutou V, Yu J et al. Enhanced backward-directed multiphoton-excited fluorescence from dielectric microcavities[J]. Physical Review Letters, 85, 54-57(2000).
[53] Lecler S, Haacke S, Lecong N et al. Photonic jet driven non-linear optics: example of two-photon fluorescence enhancement by dielectric microspheres[J]. Optics Express, 15, 4935-4942(2007).
[54] Liu W W, Li X H, Song Y L et al. Cooperative enhancement of two-photon-absorption-induced photoluminescence from a 2D perovskite-microsphere hybrid dielectric structure[J]. Advanced Functional Materials, 28, 1707550(2018).
[55] Pérez-Rodríguez C, Imanieh M H, Martín L L et al. Study of the focusing effect of silica microspheres on the upconversion of Er3+-Yb3+ codoped glass ceramics[J]. Journal of Alloys and Compounds, 576, 363-368(2013).
[56] Liang L L, Teh D B L, Dinh N D et al. Upconversion amplification through dielectric superlensing modulation[J]. Nature Communications, 10, 1391(2019).
[57] Liu Q Y, Liu H C, Li D Y et al. Microlens array enhanced upconversion luminescence at low excitation irradiance[J]. Nanoscale, 11, 14070-14078(2019).
[58] Wang F, Liu X G. Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals[J]. Chemical Society Reviews, 38, 976-989(2009).
[59] Auzel F. Upconversion and anti-stokes processes with f and d ions in solids[J]. Chemical Reviews, 104, 139-174(2004).
[60] Zhang Y J, Yan Y Z, Yang L X et al. Ultraviolet luminescence enhancement of planar wide bandgap semiconductor film by a hybrid microsphere cavity/dual metallic nanoparticles sandwich structure[J]. Optics Express, 27, 15399-15412(2019).
[61] Zhang W N, Lei H X. Fluorescence enhancement based on cooperative effects of a photonic nanojet and plasmon resonance[J]. Nanoscale, 12, 6596-6602(2020).
[62] Ji Y N, Xu W, Ding N et al. Huge upconversion luminescence enhancement by a cascade optical field modulation strategy facilitating selective multispectral narrow-band near-infrared photodetection[J]. Light: Science & Applications, 9, 184(2020).
[63] Li Y C, Liu X S, Yang X G et al. Enhancing upconversion fluorescence with a natural bio-microlens[J]. ACS Nano, 11, 10672-10680(2017).
[64] Chen X X, Wu T L, Gong Z Y et al. Lipid droplets as endogenous intracellular microlenses[J]. Light: Science & Applications, 10, 242(2021).
[65] Li H, Chen X X, Zhang Y et al. Chloroplast optical microlens with variable focus[J]. Acta Optica Sinica, 42, 0411003(2022).
[66] Darafsheh A. Photonic nanojets and their applications[J]. Journal of Physics: Photonics, 3, 022001(2021).
[67] Chiasera A, Dumeige Y, Féron P et al. Spherical whispering-gallery-mode microresonators[J]. Laser & Photonics Reviews, 4, 457-482(2010).
[68] Righini G C, Dumeige Y, Féron P et al. Whispering gallery mode microresonators: fundamentals and applications[J]. La Rivista Del Nuovo Cimento, 34, 435-488(2011).
[69] Yan Y Z, Liu J W, Xing C et al. Parametric study on photoluminescence enhancement of high-quality zinc oxide single-crystal capping with dielectric microsphere array[J]. Applied Optics, 57, 7740-7749(2018).
[70] Biccari F, Hamilton T, Ristori A et al. Quantum dots luminescence collection enhancement and nanoscopy by dielectric microspheres[J]. Particle & Particle Systems Characterization, 37, 1900431(2020).
[71] Aouani H, Djaker N, Wenger J et al. High-efficiency single molecule fluorescence detection and correlation spectroscopy with dielectric microspheres[J]. Proceedings of SPIE, 7571, 75710A(2010).
[72] Krivitsky L A, Wang J J, Wang Z B et al. Locomotion of microspheres for super-resolution imaging[J]. Scientific Reports, 3, 3501(2013).
[73] Wu M X, Huang B J, Chen R et al. Modulation of photonic nanojets generated by microspheres decorated with concentric rings[J]. Optics Express, 23, 20096-20103(2015).
[74] Aouani H, Deiss F, Wenger J et al. Optical-fiber-microsphere for remote fluorescence correlation spectroscopy[J]. Optics Express, 17, 19085-19092(2009).
[75] Du C L, Kasim J, You Y M et al. Enhancement of Raman scattering by individual dielectric microspheres[J]. Journal of Raman Spectroscopy, 42, 145-148(2011).
[76] Huang S H, Jiang X F, Peng B et al. Surface-enhanced Raman scattering on dielectric microspheres with whispering gallery mode resonance[J]. Photonics Research, 6, 122-132(2018).
[77] Kong S C, Sahakian A V, Heifetz A et al. Robust detection of deeply subwavelength pits in simulated optical data-storage disks using photonic jets[J]. Applied Physics Letters, 92, 211102(2008).
[78] Jacassi A, Tantussi F, Dipalo M et al. Scanning probe photonic nanojet lithography[J]. ACS Applied Materials & Interfaces, 9, 32386-32393(2017).
[79] Liu X C, Xie Y, Chen Y Q et al. Fiber coupled double microsphere resonator and its mode splitting characteristics[J]. Acta Optica Sinica, 41, 1306017(2021).