• Laser & Optoelectronics Progress
  • Vol. 59, Issue 14, 1415016 (2022)
Junhui Ge1, Jian Wang1, Yiping Peng1, Jiexuan Li1..., Changyan Xiao1,** and Yong Liu2,*|Show fewer author(s)
Author Affiliations
  • 1College of Electrical and Information Engineering, Hunan University, Changsha 410082, Hunan , China
  • 2Zhejiang Tongji Vocational College of Science and Technology, Hangzhou 311231, Zhejiang , China
  • show less
    DOI: 10.3788/LOP202259.1415016 Cite this Article Set citation alerts
    Junhui Ge, Jian Wang, Yiping Peng, Jiexuan Li, Changyan Xiao, Yong Liu. Recognition Method for Spray-Painted Workpieces Based on Mask R-CNN and Fast Point Feature Histogram Feature Pairing[J]. Laser & Optoelectronics Progress, 2022, 59(14): 1415016 Copy Citation Text show less
    References

    [1] Zou Z X, Shi Z W, Guo Y H et al. Object detection in 20 years: a survey[EB/OL]. https://arxiv.org/abs/1905.05055

    [2] Viola P, Jones M. Rapid object detection using a boosted cascade of simple features[C](2001).

    [3] Lowe D G. Object recognition from local scale-invariant features[EB/OL]. https://www.cs.ubc.ca/~lowe/papers/iccv99.pdf

    [4] Ojala T, Pietikainen M, Maenpaa T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24, 971-987(2002).

    [5] He K M, Zhang X Y, Ren S Q et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37, 1904-1916(2015).

    [6] Ren S Q, He K M, Girshick R et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 1137-1149(2017).

    [7] Dai J F, Li Y, He K M et al. R-FCN: object detection via region-based fully convolutional networks[EB/OL]. https://arxiv.org/abs/1605.06409

    [8] Redmon J, Divvala S, Girshick R et al. You only look once: unified, real-time object detection[C], 779-788(2016).

    [9] Liu W, Anguelov D, Erhan D et al. SSD: single shot MultiBox detector[M]. Leibe B, Matas J, Sebe N, et al. Computer vision-ECCV 2016, 9905, 21-37(2016).

    [10] Guo Y L, Bennamoun M, Sohel F et al. 3D object recognition in cluttered scenes with local surface features: a survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36, 2270-2287(2014).

    [11] Hodaň T, Michel F, Brachmann E et al. BOP: benchmark for 6D object pose estimation[M]. Ferrari V, Hebert M, Sminchisescu C, et al. Computer vision-ECCV 2018, 11214, 19-35(2018).

    [12] Salti S, Tombari F, di Stefano L. A performance evaluation of 3D keypoint detectors[C], 236-243(2011).

    [13] Taati B, Greenspan M. Local shape descriptor selection for object recognition in range data[J]. Computer Vision and Image Understanding, 115, 681-694(2011).

    [14] Guo Y L. Local feature description 3D modeling and object recognition in point-clouds[D](2015).

    [15] Drost B, Ulrich M, Navab N et al. Model globally, match locally: efficient and robust 3D object recognition[C], 998-1005(2010).

    [16] Charles R Q, Hao S, Mo K C et al. PointNet: deep learning on point sets for 3D classification and segmentation[C], 77-85(2017).

    [17] Charles R Q, Yi L, Su H et al. Pointnet++: deep hierarchical feature learning on point sets in a metric space[C], 5099-5108(2017).

    [18] Kanezaki A, Matsushita Y, Nishida Y. RotationNet: joint object categorization and pose estimation using multiviews from unsupervised viewpoints[C], 5010-5019(2018).

    [19] Liu T, Gao S J, Nie W Z. Multitarget detection algorithm based on multimodal information fusion[J]. Laser & Optoelectronics Progress, 59, 0815002(2022).

    [20] He K M, Gkioxari G, Dollár P et al. Mask R-CNN[C], 2980-2988(2017).

    [21] Ye Y X, Wang J S, Wu F Y et al. Target recognition and localization, bounding box optimization of disinfection robot[J]. Laser & Optoelectronics Progress, 59, 0415008(2022).

    [22] Rusu R B, Blodow N, Beetz M. Fast point feature histograms (FPFH) for 3D registration[C], 3212-3217(2009).

    [23] Ge J H, Li J X, Peng Y P et al. Online 3-D modeling of complex workpieces for the robotic spray painting with low-cost RGB-D cameras[J]. IEEE Transactions on Instrumentation and Measurement, 70, 5011013(2021).

    [24] Lenc K, Vedaldi A. Understanding image representations by measuring their equivariance and equivalence[J]. International Journal of Computer Vision, 127, 456-476(2019).

    [25] Zhao M F, Cao L B, Song T et al. Independent method for selecting radius of FPFH neighborhood in 3D point cloud registration[J]. Laser & Optoelectronics Progress, 58, 0610002(2021).

    [26] Charles R Q, Liu W, Wu C X et al. Frustum PointNets for 3D object detection from RGB-D data[C], 918-927(2018).

    [27] Theiler P W, Wegner J D, Schindler K. Markerless point cloud registration with keypoint-based 4-points congruent sets[J]. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, II-5/W2, 283-288(2013).

    [28] Zhong Y. Intrinsic shape signatures: a shape descriptor for 3D object recognition[C], 689-696(2009).

    [29] Aiger D, Mitra N J, Cohen-Or D. 4-points congruent sets for robust pairwise surface registration[C], 1-10(2008).

    [30] Salti S, Tombari F, di Stefano L. SHOT: Unique signatures of histograms for surface and texture description[J]. Computer Vision and Image Understanding, 125, 251-264(2014).

    [31] Li Y X, Guo J M, Pan S Y et al. A point cloud registration algorithm based on ISS-SHOT features[J]. Bulletin of Surveying and Mapping, 21-26(2020).

    Junhui Ge, Jian Wang, Yiping Peng, Jiexuan Li, Changyan Xiao, Yong Liu. Recognition Method for Spray-Painted Workpieces Based on Mask R-CNN and Fast Point Feature Histogram Feature Pairing[J]. Laser & Optoelectronics Progress, 2022, 59(14): 1415016
    Download Citation