[1] Sadri R, Hosseini M, Kazi S N et al. A facile, bio-based, novel approach for synthesis of covalently functionalized graphene nanoplatelet nano-coolants toward improved thermo-physical and heat transfer properties[J]. Journal of Colloid and Interface Science, 509, 140-152(2018).
[2] Hübler A W, Osuagwu O. Digital quantum batteries: energy and information storage in nanovacuum tube arrays[J]. Complexity, 15, 48-55(2010).
[3] Portela C M, Vidyasagar A, Krödel S et al. Extreme mechanical resilience of self-assembled nanolabyrinthine materials[J]. Proceedings of the National Academy of Sciences of the United States of America, 117, 5686-5693(2020).
[4] Peierls R. Quelques propriétés typiques des corps solides[J]. Annales de l'institut Henri Poincaré, 5, 177-222(1935).
[5] Landau L D. Zur theorie der phasenumwandlungen II[J]. Physikalische Zeitschrift der Sowjetunion, 11, 26-35(1937).
[6] Novoselov K S, Geim A K, Morozov S V et al. Electric field effect in atomically thin carbon films[J]. Science, 306, 666-669(2004).
[7] Geim A K, Novoselov K S. The rise of graphene[J]. Nature Materials, 6, 183-191(2007).
[8] Balandin A A, Ghosh S, Bao W Z et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters, 8, 902-907(2008).
[9] Bolotin K I, Sikes K J, Jiang Z et al. Ultrahigh electron mobility in suspended graphene[J]. Solid State Communications, 146, 351-355(2008).
[10] Han J, Ryu S, Sohn D et al. Mechanical strength characteristics of asymmetric tilt grain boundaries in graphene[J]. Carbon, 68, 250-257(2014).
[11] Bonaccorso F, Sun Z, Hasan T et al. Graphene photonics and optoelectronics[J]. Nature Photonics, 4, 611-622(2010).
[12] Novoselov K S, Geim A K, Morozov S V et al. Two-dimensional gas of massless Dirac fermions in graphene[J]. Nature, 438, 197-200(2005).
[13] Dong H F, Gao W C, Yan F et al. Fluorescence resonance energy transfer between quantum dots and graphene oxide for sensing biomolecules[J]. Analytical Chemistry, 82, 5511-5517(2010).
[14] Robinson J T, Perkins F K, Snow E S et al. Reduced graphene oxide molecular sensors[J]. Nano Letters, 8, 3137-3140(2008).
[15] Sun H J, Wu L, Wei W L et al. Recent advances in graphene quantum dots for sensing[J]. Materials Today, 16, 433-442(2013).
[16] Hu T T, Mei X, Wang Y J et al. Two-dimensional nanomaterials: fascinating materials in biomedical field[J]. Science Bulletin, 64, 1707-1727(2019).
[17] Dean C R, Young A F, Meric I et al. Boron nitride substrates for high-quality graphene electronics[J]. Nature Nanotechnology, 5, 722-726(2010).
[18] Miró P, Ghorbani-Asl M, Heine T. Two dimensional materials beyond MoS2: noble-transition-metal dichalcogenides[J]. Angewandte Chemie International Edition, 53, 3015-3018(2014).
[19] Mak K F, Lee C G, Hone J et al. Atomically thin MoS2: a new direct-gap semiconductor[J]. Physical Review Letters, 105, 136805(2010).
[20] Kumbhakar P, Gowda C C, Mahapatra P L et al. Emerging 2D metal oxides and their applications[J]. Materials Today, 45, 142-168(2021).
[21] Si J J, Yu J Q, Shen Y et al. Elemental 2D materials: progress and perspectives toward unconventional structures[J]. Small Structures, 2, 2000101(2021).
[22] Wang Y H, Liu L Z, Ma T Y et al. 2D graphitic carbon nitride for energy conversion and storage[J]. Advanced Functional Materials, 31, 2102540(2021).
[23] Rives V, Ulibarri M A. Layered double hydroxides (LDH) intercalated with metal coordination compounds and oxometalates[J]. Coordination Chemistry Reviews, 181, 61-120(1999).
[24] Eddaoudi M, Kim J, Rosi N et al. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage[J]. Science, 295, 469-472(2002).
[25] Furukawa H, Yaghi O M. Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications[J]. Journal of the American Chemical Society, 131, 8875-8883(2009).
[26] Wu Q, Li N B, Wang Y et al. A 2D transition metal carbide MXene-based SPR biosensor for ultrasensitive carcinoembryonic antigen detection[J]. Biosensors and Bioelectronics, 144, 111697(2019).
[27] Das S, Demarteau M, Roelofs A. Ambipolar phosphorene field effect transistor[J]. ACS Nano, 8, 11730-11738(2014).
[28] Leong W S, Luo X, Li Y D et al. Low resistance metal contacts to MoS2 devices with nickel-etched-graphene electrodes[J]. ACS Nano, 9, 869-877(2015).
[29] Yang S X, Jiang C B, Wei S H. Gas sensing in 2D materials[J]. Applied Physics Reviews, 4, 021304(2017).
[30] Wang F M, Shifa T A, Zhan X Y et al. Recent advances in transition-metal dichalcogenide based nanomaterials for water splitting[J]. Nanoscale, 7, 19764-19788(2015).
[31] Li W F, Yang Y M, Zhang G et al. Ultrafast and directional diffusion of lithium in phosphorene for high-performance lithium-ion battery[J]. Nano Letters, 15, 1691-1697(2015).
[32] Swathi R S, Sebastian K L. Resonance energy transfer from a dye molecule to graphene[J]. The Journal of Chemical Physics, 129, 054703(2008).
[33] Peng X Y, Zhang Y L, Lu D T et al. Ultrathin Ti3C2 nanosheets based “off-on” fluorescent nanoprobe for rapid and sensitive detection of HPV infection[J]. Sensors and Actuators B: Chemical, 286, 222-229(2019).
[34] Wu W H, Hu H Y, Li F et al. A graphene oxide-based nano-beacon for DNA phosphorylation analysis[J]. Chemical Communications, 47, 1201-1203(2011).
[35] Sheng A Z, Wang P, Yang J Y et al. MXene coupled with CRISPR-Cas12a for analysis of endotoxin and bacteria[J]. Analytical Chemistry, 93, 4676-4681(2021).
[36] Zhu C F, Zeng Z Y, Li H et al. Single-layer MoS2-based nanoprobes for homogeneous detection of biomolecules[J]. Journal of the American Chemical Society, 135, 5998-6001(2013).
[37] Homola J. Present and future of surface plasmon resonance biosensors[J]. Analytical and Bioanalytical Chemistry, 377, 528-539(2003).
[38] Raether H. Surface plasmons on smooth and rough surfaces and on gratings[M]. Surface plasmons on smooth and rough surfaces and on gratings. Springer tracts in modern physics, 111, 91-116(1988).
[39] Mohanty N, Berry V. Graphene-based single-bacterium resolution biodevice and DNA transistor: interfacing graphene derivatives with nanoscale and microscale biocomponents[J]. Nano Letters, 8, 4469-4476(2008).
[40] Ling X, Xie L M, Fang Y et al. Can graphene be used as a substrate for Raman enhancement?[J]. Nano Letters, 10, 553-561(2010).
[41] Ling X, Fang W J, Lee Y H et al. Raman enhancement effect on two-dimensional layered materials: graphene, h-BN and MoS2[J]. Nano Letters, 14, 3033-3040(2014).
[42] Sarycheva A, Makaryan T, Maleski K et al. Two-dimensional titanium carbide (MXene) as surface-enhanced Raman scattering substrate[J]. The Journal of Physical Chemistry C, 121, 19983-19988(2017).
[43] Li X H, Choy W C H, Ren X G et al. Highly intensified surface enhanced Raman scattering by using monolayer graphene as the nanospacer of metal film-metal nanoparticle coupling system[J]. Advanced Functional Materials, 24, 3114-3122(2014).
[44] Leenaerts O, Partoens B, Peeters F M. Water on graphene: hydrophobicity and dipole moment using density functional theory[J]. Physical Review B, 79, 235440(2009).
[45] Zhang Y B, Ali S F, Dervishi E et al. Cytotoxicity effects of graphene and single-wall carbon nanotubes in neural phaeochromocytoma-derived PC12 cells[J]. ACS Nano, 4, 3181-3186(2010).
[46] Lu C H, Yang H H, Zhu C L et al. A graphene platform for sensing biomolecules[J]. Angewandte Chemie International Edition, 48, 4785-4787(2009).
[47] Song B, Li D, Qi W P et al. Graphene on Au(111): a highly conductive material with excellent adsorption properties for high-resolution bio/nanodetection and identification[J]. ChemPhysChem, 11, 585-589(2010).
[48] Wu L, Chu H S, Koh W S et al. Highly sensitive graphene biosensors based on surface plasmon resonance[J]. Optics Express, 18, 14395-14400(2010).
[49] Singha S S, Mondal S, Bhattacharya T S et al. Au nanoparticles functionalized 3D-MoS2 nanoflower: an efficient SERS matrix for biomolecule sensing[J]. Biosensors and Bioelectronics, 119, 10-17(2018).
[50] Ang P K, Li A, Jaiswal M et al. Flow sensing of single cell by graphene transistor in a microfluidic channel[J]. Nano Letters, 11, 5240-5246(2011).
[51] Li Z W, Zhang W F, Xing F. Graphene optical biosensors[J]. International Journal of Molecular Sciences, 20, 2461(2019).
[52] Xing F, Meng G X, Zhang Q et al. Ultrasensitive flow sensing of a single cell using graphene-based optical sensors[J]. Nano Letters, 14, 3563-3569(2014).
[53] Backman V, Wallace M B, Perelman L T et al. Detection of preinvasive cancer cells[J]. Nature, 406, 35-36(2000).
[54] Wang Y J, Zhang S W, Xu T et al. Ultra-sensitive and ultra-fast detection of whole unlabeled living cancer cell responses to paclitaxel with a graphene-based biosensor[J]. Sensors and Actuators B: Chemical, 263, 417-425(2018).
[55] Slavík R, Homola J. Ultrahigh resolution long range surface plasmon-based sensor[J]. Sensors and Actuators B: Chemical, 123, 10-12(2007).
[56] Vilela P, El-Sagheer A, Millar T M et al. Graphene oxide-upconversion nanoparticle based optical sensors for targeted detection of mRNA biomarkers present in Alzheimer’s disease and prostate cancer[J]. ACS Sensors, 2, 52-56(2017).
[57] Sun T, Samiotaki G, Wang S T et al. Acoustic cavitation-based monitoring of the reversibility and permeability of ultrasound-induced blood-brain barrier opening[J]. Physics in Medicine and Biology, 60, 9079-9094(2015).
[58] Stobiecka M, Dworakowska B, Jakiela S et al. Sensing of survivin mRNA in malignant astrocytes using graphene oxide nanocarrier-supported oligonucleotide molecular beacons[J]. Sensors and Actuators B: Chemical, 235, 136-145(2016).
[59] Xue T Y, Liang W Y, Li Y W et al. Ultrasensitive detection of miRNA with an antimonene-based surface plasmon resonance sensor[J]. Nature Communications, 10, 1-9(2019).
[60] Schedin F, Lidorikis E, Lombardo A et al. Surface-enhanced Raman spectroscopy of graphene[J]. ACS Nano, 4, 5617-5626(2010).
[61] Yang L, Zhen S J, Li Y F et al. Silver nanoparticles deposited on graphene oxide for ultrasensitive surface-enhanced Raman scattering immunoassay of cancer biomarker[J]. Nanoscale, 10, 11942-11947(2018).
[62] Kaya T, Kaneko T, Kojima S et al. High-sensitivity immunoassay with surface plasmon field-enhanced fluorescence spectroscopy using a plastic sensor chip: application to quantitative analysis of total prostate-specific antigen and GalNAcβ1-4GlcNAc-linked prostate-specific antigen for prostate cancer diagnosis[J]. Analytical Chemistry, 87, 1797-1803(2015).
[63] Kim J A, Hwang T, Dugasani S R et al. Graphene based fiber optic surface plasmon resonance for bio-chemical sensor applications[J]. Sensors and Actuators B: Chemical, 187, 426-433(2013).
[64] Gao R K, Cheng Z Y, DeMello A J et al. Wash-free magnetic immunoassay of the PSA cancer marker using SERS and droplet microfluidics[J]. Lab on a Chip, 16, 1022-1029(2016).
[65] Gao Z Q, Xu M D, Hou L et al. Magnetic bead-based reverse colorimetric immunoassay strategy for sensing biomolecules[J]. Analytical Chemistry, 85, 6945-6952(2013).
[66] Yang Y C, Tseng W L. 1, 4-benzenediboronic-acid-induced aggregation of gold nanoparticles: application to hydrogen peroxide detection and biotin-avidin-mediated immunoassay with naked-eye detection[J]. Analytical Chemistry, 88, 5355-5362(2016).
[67] Li X, Li W B, Yang Q H et al. Rapid and quantitative detection of prostate specific antigen with a quantum dot nanobeads-based immunochromatography test strip[J]. ACS Applied Materials & Interfaces, 6, 6406-6414(2014).
[68] Vial S, Wenger J. Single-step homogeneous immunoassay for detecting prostate-specific antigen using dual-color light scattering of metal nanoparticles[J]. The Analyst, 142, 3484-3491(2017).
[69] Wu X, Li T, Tao G Y et al. A universal and enzyme-free immunoassay platform for biomarker detection based on gold nanoparticle enumeration with a dark-field microscope[J]. The Analyst, 142, 4201-4205(2017).
[70] Wu M S, Yuan D J, Xu J J et al. Electrochemiluminescence on bipolar electrodes for visual bioanalysis[J]. Chemical Science, 4, 1182-1188(2013).
[71] Liu J, Lu C Y, Zhou H et al. A dual-functional electrochemical biosensor for the detection of prostate specific antigen and telomerase activity[J]. Chemical Communications, 49, 6602-6604(2013).
[72] Wu D, Li R, Wang H X et al. Hollow mesoporous silica microspheres as sensitive labels for immunoassay of prostate-specific antigen[J]. The Analyst, 137, 608-613(2012).