• Laser & Optoelectronics Progress
  • Vol. 56, Issue 10, 101403 (2019)
Yingyi Ma, Yude Liu*, Wentian Shi, Peng Wang..., Bin Qi, Jin Yang and Dong Han|Show fewer author(s)
Author Affiliations
  • School of Materials Science and Mechanical Engineering, Beijing Technology and Business University, Beijing 100048, China
  • show less
    DOI: 10.3788/LOP56.101403 Cite this Article Set citation alerts
    Yingyi Ma, Yude Liu, Wentian Shi, Peng Wang, Bin Qi, Jin Yang, Dong Han. Effect of Scanning Speed on Forming Defects and Properties of Selective Laser Melted 316L Stainless Steel Powder[J]. Laser & Optoelectronics Progress, 2019, 56(10): 101403 Copy Citation Text show less
    References

    [1] Casati R, Lemke J, Vedani M. Microstructure and fracture behavior of 316L austenitic stainless steel produced by selective laser melting[J]. Journal of Materials Science & Technology, 32, 738-744(2016). http://www.cnki.com.cn/Article/CJFDTotal-CLKJ201608007.htm

    [2] Gong H J, Rafi K, Gu H F et al. Influence of defects on mechanical properties of Ti-6Al-4V components produced by selective laser melting and electron beam melting[J]. Materials & Design, 86, 545-554(2015). http://www.sciencedirect.com/science/article/pii/S0264127515302161

    [3] Yang Y Q, Chen J, Song C H et al. Current status and progress on technology of selective laser melting of metal parts[J]. Laser & Optoelectronics Progress, 55, 011401(2018).

    [4] Ma T, Liu T T, Liao W H et al. Fatigue properties of Ti-6Al-4V produced by selective laser melting[J]. Chinese Journal of Lasers, 45, 1102012(2018).

    [5] Meng X, Tian X J, Cheng X et al. Study on microstructure and heating treatment of Co-based superalloy DZ40M prepared by laser melting deposition[J]. Chinese Journal of Lasers, 45, 1002008(2018).

    [6] Wang M Y, Zhu H H, Qi T et al. Selective laser melting Al-Si aluminum alloy and the crack formation mechanism[J]. Laser Technology, 40, 219-222(2016).

    [7] Sun J F, Yang Y Q, Yang Z. Study on surface roughness of selective laser melting Ti6Al4V based on powder characteristics[J]. Chinese Journal of Lasers, 43, 0702004(2016).

    [8] Wang D, Wu S B, Fu F et al. Mechanisms and characteristics of spatter generation in SLM processing and its effect on the properties[J]. Materials & Design, 117, 121-130(2017). http://www.sciencedirect.com/science/article/pii/S0264127516315866

    [9] Yang Y Q, Song C H, Wang D. Selective laser melting and its applications on personalized medical parts[J]. Journal of Mechanical Engineering, 50, 140-151(2014).

    [10] Sun Q P, Liang Y K, Feng C M et al. Optimization of selective laser melting forming technology for 316 stainless steel[J]. Hot Working Technology, 45, 65-68(2016).

    [11] Liu Y, Li Z Y, Zhang X G et al. Selective laser melting forming process of 316L stainless steel powder and properties of formed parts[J]. Materials for Mechanical Engineering, 42, 40-44(2018).

    [12] Shao Y C, Chen C J, Zhang M et al. Research on crack issue of Deloro40 Ni alloys prototype fabricated by laser additive manufacturing[J]. Applied Laser, 36, 397-402(2016).

    [13] Sun T T, Yang Y Q, Su X B et al. Research of densification of 316L stainless steel powder in selective laser melting process[J]. Laser Technology, 34, 443-446(2010).

    [14] Wang D, Yang Y Q, He X R et al. Fiber laser selective melting of 316L stainless steel powder[J]. High Power Laser and Particle Beams, 22, 1881-1886(2010).

    [15] Liang Q J. Influence of process parameter on 316L stainless steel produced via selective laser melting[J]. Journal of Guangxi University (Natural Science Edition), 43, 1013-1019(2018).

    [16] Qiu C L, Panwisawas C, Ward M et al. On the role of melt flow into the surface structure and porosity development during selective laser melting[J]. Acta Materialia, 96, 72-79(2015). http://www.sciencedirect.com/science/article/pii/S1359645415003870

    [17] Li R D, Liu J H, Shi Y S et al. 316L stainless steel with gradient porosity fabricated by selective laser melting[J]. Journal of Materials Engineering and Performance, 19, 666-671(2010). http://www.emeraldinsight.com/servlet/linkout?suffix=b17&dbid=16&doi=10.1108%2FRPJ-03-2013-0028&key=10.1007%2Fs11665-009-9535-2

    [18] Zhang Y Z, Liu F R, Chen J M et al. Effects of surface quality on corrosion resistance of 316L stainless steel parts manufactured via SLM[J]. Journal of Laser Applications, 29, 022306(2017). http://adsabs.harvard.edu/abs/2017JLasA..29b2306Z

    [19] Yin H, Felicelli S D. Dendrite growth simulation during solidification in the LENS process[J]. Acta Materialia, 58, 1455-1465(2010). http://www.sciencedirect.com/science/article/pii/S1359645409007563

    [20] Gu D D, Shen Y F. Effects of processing parameters on consolidation and microstructure of W-Cu components by DMLS[J]. Journal of Alloys and Compounds, 473, 107-115(2009). http://www.sciencedirect.com/science/article/pii/S0925838808008256

    [21] Chen H Y, Gu D D, Gu R H et al. Microstructure evolution and mechanical properties of 5CrNi4Mo die steel parts by selective laser melting additive manufacturing[J]. Chinese Journal of Lasers, 43, 0203003(2016).

    [22] Li R D, Liu J H, Shi Y S et al. Balling behavior of stainless steel and nickel powder during selective laser melting process[J]. The International Journal of Advanced Manufacturing Technology, 59, 1025-1035(2012). http://www.tandfonline.com/servlet/linkout?suffix=CIT0020&dbid=16&doi=10.1080%2F14686996.2018.1455154&key=10.1007%2Fs00170-011-3566-1

    [23] Duan R X, Huang B Y, Liu Z M et al. Selective laser melting fabrication and cracking behavior of Rene104 nickel-based superalloy[J]. The Chinese Journal Nonferrous Metals, 28, 1568-1578(2018).

    [24] Zhong C L, Fu J B, Ding Y L et al. Porosity control of Inconel 718 in high deposition-rate laser metal deposition[J]. Optics and Precision Engineering, 23, 3005-3011(2015).

    [25] Wang Z J, Wang Z Y, Song H W et al[J]. Study on solidification process of the molten pool of laser rapid forming of Ti-6Al-4V Machinery Design & Manufacture, 2017, 103-105.

    [26] Farshidianfar M H, Khajepour A, Gerlich A P. Effect of real-time cooling rate on microstructure in laser additive manufacturing[J]. Journal of Materials Processing Technology, 231, 468-478(2016). http://www.sciencedirect.com/science/article/pii/S0924013616300176

    [27] Gunenthiram V, Peyre P, Schneider M et al. Analysis of laser-melt pool-powder bed interaction during the selective laser melting of a stainless steel[J]. Journal of Laser Applications, 29, 022303(2017). http://adsabs.harvard.edu/abs/2017JLasA..29b2303G

    [28] Zhang B C, Dembinski L, Coddet C. The study of the laser parameters and environment variables effect on mechanical properties of high compact parts elaborated by selective laser melting 316L powder[J]. Materials Science and Engineering: A, 584, 21-31(2013). http://www.sciencedirect.com/science/article/pii/S0921509313007065

    [29] Mirza F A, Chen D L. A unified model for the prediction of yield strength in particulate-reinforced metal matrix nanocomposites[J]. Materials, 8, 5138-5153(2015). http://europepmc.org/abstract/MED/28793496

    Yingyi Ma, Yude Liu, Wentian Shi, Peng Wang, Bin Qi, Jin Yang, Dong Han. Effect of Scanning Speed on Forming Defects and Properties of Selective Laser Melted 316L Stainless Steel Powder[J]. Laser & Optoelectronics Progress, 2019, 56(10): 101403
    Download Citation