[1] TIAN J J, XUE Q F, YAO Q, et al. Inorganic halide perovskite solar cells:progress and challenges[J]. Advanced energy materials, 2020, 10(23):2000183.
[2] LI Z Z, ZHOU F G, WANG Q, et al. Approaches for thermodynamically stabilized CsPbI3 solar cells[J]. Nano energy, 2020, 71:104634.
[3] PARIDA B, RYU J, YOON S, et al. Two-step growth of CsPbI3-xBrx films employing dynamic CsBr treatment: toward all-inorganic perovskite photovoltaics with enhanced stability[J]. Journal of materials chemistry, 2019, 7(31):18488-18498.
[4] FU Q, TANG X, HUANG B, et al. Recent progress on the long-term stability of perovskite solar cells[J]. Advanced science, 5(5):1700387.
[5] BACK H, KIM G, KIM J, et al. Achieving long-term stable perovskite solar cells via ion neutralization[J]. Energy & environmental science, 2016, 9(4):1258-1263.
[6] GREEN M A, HO-BAILLIE A, SNAITH H J. The emergence of perovskite solar cells[J]. Nature photonics, 2014, 8(7):506-514.
[7] WANG Y, ZHANG T, KAN M, et al. Efficient α-CsPbI3 photovoltaics with surface terminated organic cations[J]. Joule, 2018, 2(10):2065-2075.
[8] WANG K, JIN Z, LIANG L, et al. Chlorine doping for black γ-CsPbI3 solar cells with stabilized efficiency beyond 16%[J]. Nano energy, 2019, 58:175-182.
[9] KE F, WANG C, JIA C, et al. Preserving a robust CsPbI3 perovskite phase via pressure-directed octahedral tilt[J]. Nature communications, 2021, 12(1):1-8.
[10] LIU C, LI W, ZHANG C, et al. All-inorganic CsPbI2Br perovskite solar cells with high efficiency exceeding 13%[J]. Journal of the American Chemical Society, 2018,140(11):3825-3828.
[11] SHANG Y, FANG Z, HU W, et al. Efficient and photostable CsPbI2Br solar cells realized by adding PMMA[J]. Journal of semiconductors, 2021, 42(5): 050501.
[12] LIU T H, CHEN K, HU Q, et al. Inverted perovskite solar cells:progresses and perspectives[J]. Advanced energy materials, 2016, 6(17):1600457.
[13] CHEN K, HU Q, LIU T, et al. Charge-carrier balance for highly efficient inverted planar heterojunction perovskite solar cells[J]. Advanced materials, 2016, 28(48):10718-10724.
[14] XIA Y, DAI S. Review on applications of PEDOTs and PEDOT:PSS in perovskite solar cells[J]. Journal of materials science: materials in electronics, 2020, 32(10):12746-12757.
[15] RAHAQ Y, MOUSSA M, MOHAMMAD A, et al. Highly reproducible perovskite solar cells via controlling the morphologies of the perovskite thin films by the solution-processed two-step method[J]. Journal of materials science-materials in electronics, 2018, 29(19): 16426-16436.
[16] CHEN C L, ZHANG S S, WU S H, et al. Effect of BCP buffer layer on eliminating charge accumulation for high performance of inverted perovskite solar cells[J]. Royal society of chemistry advances, 2017, 7(57): 35819-35826.
[17] TSAI C H, LIN C M, KUEI C H. Investigation of the effects of various organic solvents on the PCBM electron transport layer of perovskite solar cells[J]. Coatings, 2020, 10(3):273.
[18] ZHANG T, WANG F, CHEN H, et al. Mediator antisolvent strategy to stabilize all-inorganic CsPbI3 for perovskite solar cells with efficiency exceeding 16%[J]. ACS energy letters, 2020, 5(5):1619-1627.
[19] YUAN B L, LI C, YI W C, et al. PMMA passivated CsPbI2Br perovskite film for highly efficient and stable solar cells[J]. Journal of physics and chemistry of solids, 2021, 153:110000.
[20] AVA T T, JEONG H J, YU H M, et al. Role of PMMA to make MAPbI3 grain boundary heat-resistant[J]. Applied surface science, 2021, 558:149852.
[21] DING D, LANZETTA L, LIANG X, et al. Ultrathin polymethylmethacrylate interlayers boost performance of hybrid tin halide perovskite solar cells[J]. Chemical communications, 2021, 57(41):5047-5050.
[22] WANG F, YU H, XU H H, et al. HPbI3:a new precursor compound for highly efficient solution-processed perovskite solar cells[J]. Advanced functional materials, 2015, 25(7):1120-1126.
[23] PEI Y, LIU Y, LI F, et al. Unveiling property of hydrolysis-derived DMAPbI3 for perovskite devices: composition engineering, defect mitigation, and stability optimization[J]. IScience, 2019, 15:165-172.