[1] Tonelli L, Fortunato A, Ceschini L. CoCr alloy processed by selective laser melting (SLM): effect of laser energy density on microstructure, surface morphology, and hardness[J]. Journal of Manufacturing Processes, 52, 106-119(2020).
[2] Yin Y, Kang P, Xiao M Z et al. Effect of heat treatment on microstructure and microhardness of CoCrW alloys processed by selective laser melting[J]. Chinese Journal of Lasers, 46, 1002002(2019).
[3] Zhang M K, Yang Y Q, Song C H et al. An investigation into the aging behavior of CoCrMo alloys fabricated by selective laser melting[J]. Journal of Alloys and Compounds, 750, 878-886(2018).
[4] Ahmadi S M, Hedayati R, Li Y et al. Fatigue performance of additively manufactured meta-biomaterials: the effects of topology and material type[J]. Acta Biomaterialia, 65, 292-304(2018).
[5] Qian B, Saeidi K, Kvetková L et al. Defects-tolerant Co-Cr-Mo dental alloys prepared by selective laser melting[J]. Dental Materials, 31, 1435-1444(2015).
[6] Lee H W, Jung K H, Hwang S K et al. Microstructure and mechanical anisotropy of CoCrW alloy processed by selective laser melting[J]. Materials Science and Engineering: A, 749, 65-73(2019).
[7] Hedberg Y S, Qian B, Shen Z J et al. In vitro biocompatibility of CoCrMo dental alloys fabricated by selective laser melting[J]. Dental Materials, 30, 525-534(2014).
[8] Ram G D J, Esplin C K, Stucker B E. Microstructure and wear properties of LENS deposited medical grade CoCrMo[J]. Journal of Materials Science. Materials in Medicine, 19, 2105-2111(2008).
[9] Kou S[M]. Welding metallurgy(2002).
[10] Béreš M, Silva C C, Sarvezuk P W C et al. Mechanical and phase transformation behaviour of biomedical Co-Cr-Mo alloy fabricated by direct metal laser sintering[J]. Materials Science and Engineering: A, 714, 36-42(2018).
[11] Limmahakhun S, Oloyede A, Sitthiseripratip K et al. Stiffness and strength tailoring of cobalt chromium graded cellular structures for stress-shielding reduction[J]. Materials & Design, 114, 633-641(2017).
[12] Shuai C J, He C X, Qian G W et al. Mechanically driving supersaturated Fe-Mg solid solution for bone implant: preparation, solubility and degradation[J]. Composites Part B: Engineering, 207, 108564(2021).
[13] Issariyapat A, Visuttipitukul P, Umeda J et al. Refined grain formation behavior and strengthening mechanism of α-titanium with nitrogen fabricated by selective laser melting[J]. Additive Manufacturing, 36, 101537(2020).
[14] Huang L F, Sun Y N, Ji Y Q et al. Investigation of microstructures and mechanical properties of laser-melting-deposited AlCoCrFeNi2.5 high entropy alloy[J]. Chinese Journal of Lasers, 48, 0602107(2021).
[15] Rong P, Guo J C. Effect of substrate orientation on formation of heterocrystals in laser cladding zone[J]. Chinese Journal of Lasers, 48, 0602110(2021).
[16] He B, Wang C, Sun C Q et al. Effect of substrate preheating on microstructure and properties of laser-deposited TA15/GH4169 composite structure[J]. Chinese Journal of Lasers, 47, 0102002(2020).
[17] Lu Y J, Gan Y L, Lin J J et al. Effect of laser speeds on the mechanical property and corrosion resistance of CoCrW alloy fabricated by SLM[J]. Rapid Prototyping Journal, 23, 28-33(2017).