• Laser & Optoelectronics Progress
  • Vol. 55, Issue 10, 101403 (2018)
Zhou Yan1,2, Duan Longchen1, Wu Xueliang2, Wen Shifeng2, and Wei Qingsong2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/lop55.101403 Cite this Article Set citation alerts
    Zhou Yan, Duan Longchen, Wu Xueliang, Wen Shifeng, Wei Qingsong. Effect of Powder Particle Size on Wear and Corrosion Resistance of S136 Mould Steels Fabricated by Selective Laser Melting[J]. Laser & Optoelectronics Progress, 2018, 55(10): 101403 Copy Citation Text show less
    References

    [1] Wen S F, Ji X T, Zhou Y, et al. Development status and prospect of selective laser melting of mould steels[J]. Laser & Optoelectronics Progress, 2018, 55(1): 011404.

    [2] Zhang H, Nie X J, Zhu H H, et al. Study on high strength Al-Cu-Mg alloy fabricated by selective laser melting[J]. Chinese Journal of Lasers, 2016, 43(5): 0503007.

    [3] Chen H Y, Gu D D, Gu R H, et al. Microstructure evolution and mechanical properties of 5CrNi4Mo die steel parts by selective laser melting additive manufacturing[J]. Chinese Journal of Lasers, 2016, 43(2): 0203003.

    [4] Wen S F, Li S, Wei Q S, et al. Effect of molten pool boundaries on the mechanical properties of selective laser melting parts[J]. Journal of Materials Processing Technology, 2014, 214(11): 2660-2667.

    [5] Li R D, Shi Y S, Wang Z G, et al. Densification behavior of gas and water atomized 316L stainless steel powder during selective laser melting[J]. Applied Surface Science, 2010, 256(13): 4350-4356.

    [6] Engeli R, Etter T, Hvel S, et al. Processability of different IN738LC powder batches by selective laser melting[J]. Journal of Materials Processing Technology, 2016, 229: 484-491.

    [7] Spierings A B, Herres N, Levy G. Influence of the particle size distribution on surface quality and mechanical properties in AM steel parts[J]. Rapid Prototyping Journal, 2011, 17(3): 195-202.

    [8] Wen S F, Wu X L, Zhou Y, et al. Microstructure and property of S136 mould steel fabricated by selective laser melting[J]. Journal of Huazhong University of Science and Technology (Nature Science Edition), 2018, 46(2): 51-55.

    [9] Krakhmalev P, Yadroitsava I, Fredriksson G, et al. In situ heat treatment in selective laser melted martensitic AISI 420 stainless steels[J]. Materials & Design, 2015,87: 380-385.

    [10] Simchi A. Direct laser sintering of metal powders: Mechanism, kinetics and microstructural features[J]. Materials Scienceand Engineering A, 2006, 428(1/2): 148-158.

    [11] Hao L, Dadbakhsh S. Materials and process aspects of selective laser melting of metals and metal matrix composites: A review(invited paper)[J]. Chinese Journal of Lasers, 2009,36(12): 3192-3203.

    [12] Ye D N, Zhang J M. Haphazard packing of spheres[J].Chinese Journal of Geology, 1990,25(2): 127-136.

    [13] Jain A, Basu B, Kumar B V M, et al. Grain size-wear rate relationship for titanium in liquid nitrogen environment[J]. Acta Materialia, 2010, 58(7): 2313-2323.

    [14] Sun Y, Moroz A, Alrbaey K. Sliding wear characteristics and corrosion behaviour of selective laser melted 316L stainless steel[J]. Journal of Materials Engineeringand Performance, 2014, 23(2): 518-526.

    [15] Fang Z, Zhang L, Wu Y S, et al. Mechanism of SCC of austenitic 304SS in HCl-NaCl solutions at ambient temperature[J]. Corrosion Science and Protection Technique, 1995, 7(1): 42-46.

    [16] Lu Y Y, Liu J H, Gong B, et al. Corrosion properties of 308L stainless steel in chloride solution[J]. Dongfang Turbine, 2012(3): 45-50.

    [17] Bai X D. Corrosion and control of materials[M]. Beijing: Tsinghua University Press, 2005: 122-125.

    [18] Sasaki K, Burstein G T. The generation of surface roughness during slurry erosion-corrosion and its effect on the pitting potential[J]. Corrosion Science, 1996, 38(12): 2111-2120.

    Zhou Yan, Duan Longchen, Wu Xueliang, Wen Shifeng, Wei Qingsong. Effect of Powder Particle Size on Wear and Corrosion Resistance of S136 Mould Steels Fabricated by Selective Laser Melting[J]. Laser & Optoelectronics Progress, 2018, 55(10): 101403
    Download Citation