[1] Sorond F A, Hollenberg N K, Panych L P et al. Brain blood flow and velocity: correlations between magnetic resonance imaging and transcranial Doppler sonography[J]. Journal of Ultrasound in Medicine: Official Journal of the American Institute of Ultrasound in Medicine, 29, 1017-1022(2010).
[2] Anderson H L, Yap J T, Miller M P et al. Assessment of pharmacodynamic vascular response in a phase I trial of combretastatin A4 phosphate[J]. Journal of Clinical Oncology, 21, 2823-2830(2003).
[3] Vilela P, Rowley H A. Brain ischemia: CT and MRI techniques in acute ischemic stroke[J]. European Journal of Radiology, 96, 162-172(2017).
[4] Emanuel A L, Meijer R I, van Poelgeest E et al. Contrast-enhanced ultrasound for quantification of tissue perfusion in humans[J]. Microcirculation, 27, e12588(2020).
[5] Basak K, Manjunatha M, Dutta P K. Review of laser speckle-based analysis in medical imaging[J]. Medical & Biological Engineering & Computing, 50, 547-558(2012).
[6] Fercher A F, Briers J D. Flow visualization by means of single-exposure speckle photography[J]. Optics Communications, 37, 326-330(1981).
[7] Briers J D, Webster S. Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow[J]. Journal of Biomedical Optics, 1, 174-179(1996).
[8] Cheng H Y, Luo Q M, Zeng S Q et al. Modified laser speckle imaging method with improved spatial resolution[J]. Journal of Biomedical Optics, 8, 559-564(2003).
[9] Kong P, Yang H, Zheng G et al. Advances in laser speckle flowgraphy technique[J]. Optical Technique, 40, 21-26(2014).
[10] Duncan D D, Kirkpatrick S J. Can laser speckle flowmetry be made a quantitative tool?[J]. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 25, 2088-2094(2008).
[11] Choi B, Ramírez-San-Juan J C, Lotfi J et al. Linear response range characterization and in vivo application of laser speckle imaging of blood flow dynamics[J]. Journal of Biomedical Optics, 11, 041129(2006).
[12] Miao P, Li M H, Fontenelle H et al. Imaging the cerebral blood flow with enhanced laser speckle contrast analysis (eLASCA) by monotonic point transformation[J]. IEEE Transactions on Bio-Medical Engineering, 56, 1127-1133(2009).
[13] Miao P, Rege A, Li N et al. High resolution cerebral blood flow imaging by registered laser speckle contrast analysis[J]. IEEE Transactions on Bio-Medical Engineering, 57, 1152-1157(2010).
[14] Miao P, Li M H, Li N et al. Detecting cerebral arteries and veins: from large to small[J]. Journal of Innovative Optical Health Sciences, 3, 61-67(2010).
[15] He H, Tang Y, Zhou F Y et al. Lateral laser speckle contrast analysis combined with line beam scanning illumination to improve the sampling depth of blood flow imaging[J]. Optics Letters, 37, 3774-3776(2012).
[16] Rege A, Senarathna J, Li N et al. Anisotropic processing of laser speckle images improves spatiotemporal resolution[J]. IEEE Transactions on Bio-Medical Engineering, 59, 1272-1280(2012).
[17] Rice T B, Kwan E, Hayakawa C K et al. Quantitative, depth-resolved determination of particle motion using multi-exposure, spatial frequency domain laser speckle imaging[J]. Biomedical Optics Express, 4, 2880-2892(2013).
[18] Zeng Y G, Wang M Y, Feng G P et al. Laser speckle imaging based on intensity fluctuation modulation[J]. Optics Letters, 38, 1313-1315(2013).
[19] Ringuette D, Sigal I, Gad R et al. Reducing misfocus-related motion artefacts in laser speckle contrast imaging[J]. Biomedical Optics Express, 6, 266-276(2014).
[20] Li H, Liu Q, Lu H Y et al. Directly measuring absolute flow speed by frequency-domain laser speckle imaging[J]. Optics Express, 22, 21079-21087(2014).
[21] Li C X, Wang R K. Dynamic laser speckle angiography achieved by eigen-decomposition filtering[J]. Journal of Biophotonics, 10, 805-810(2017).
[22] Wang Y, Wen D, Chen X et al. Improving the estimation of flow speed for laser speckle imaging with single exposure time[J]. Optics Letters, 42, 57-60(2017).
[23] Lü W Z, Wang Y, Chen X et al. Enhancing vascular visualization in laser speckle contrast imaging of blood flow using multi-focus image fusion[J]. Journal of Biophotonics, 12, e201800100(2019).
[24] Liu S S, Li P C, Luo Q M. Fast blood flow visualization of high-resolution laser speckle imaging data using graphics processing unit[J]. Optics Express, 16, 14321-14329(2008).
[25] Tang X J, Feng N Y, Sun X L et al. Portable laser speckle perfusion imaging system based on digital signal processor[J]. The Review of Scientific Instruments, 81, 125110(2010).
[26] Richards L M, Kazmi S M S, Davis J L et al. Low-cost laser speckle contrast imaging of blood flow using a webcam[J]. Biomedical Optics Express, 4, 2269-2283(2013).
[27] Senarathna J, Yu H, Deng C et al. A miniature multi-contrast microscope for functional imaging in freely behaving animals[J]. Nature Communications, 10, 99(2019).
[28] Kong P, Xu H, Li R et al. Laser speckle contrast imaging based on a mobile phone camera[J]. IEEE Access, 9, 76730-76737(2021).
[29] Shiga Y, Omodaka K, Kunikata H et al. Waveform analysis of ocular blood flow and the early detection of normal tension glaucoma[J]. Investigative Ophthalmology & Visual Science, 54, 7699-7706(2013).
[30] Freiberg F J, Pfau M, Wons J et al. Optical coherence tomography angiography of the foveal avascular zone in diabetic retinopathy[J]. Graefe’s Archive for Clinical and Experimental Ophthalmology, 254, 1051-1058(2016).
[31] Gündüz K, Pulido J S, Pulido J E et al. Correlation of fundus autofluorescence with fluorescein and indocyanine green angiography in choroidal melanocytic lesions[J]. Retina, 28, 1257-1264(2008).
[32] Aizawa N, Yokoyama Y, Chiba N et al. Reproducibility of retinal circulation measurements obtained using laser speckle flowgraphy-NAVI in patients with glaucoma[J]. Clinical Ophthalmology, 5, 1171-1176(2011).
[33] Tamaki Y, Araie M, Kawamoto E et al. Noncontact, two-dimensional measurement of retinal microcirculation using laser speckle phenomenon[J]. Investigative Ophthalmology & Visual Science, 35, 3825-3834(1994).
[34] Tamaki Y, Araie M, Muta K. Effect of topical dorzolamide on tissue circulation in the rabbit optic nerve head[J]. Japanese Journal of Ophthalmology, 43, 386-391(1999).
[35] Sasaoka M, Taniguchi T, Shimazawa M et al. Intravitreal injection of endothelin-1 caused optic nerve damage following to ocular hypoperfusion in rabbits[J]. Experimental Eye Research, 83, 629-637(2006).
[36] Wang L, Cull G A, Piper C et al. Anterior and posterior optic nerve head blood flow in nonhuman primate experimental glaucoma model measured by laser speckle imaging technique and microsphere method[J]. Investigative Ophthalmology & Visual Science, 53, 8303-8309(2012).
[37] Srienc A I, Kurth-Nelson Z L, Newman E A. Imaging retinal blood flow with laser speckle flowmetry[J]. Frontiers in Neuroenergetics, 2, 128(2010).
[38] Ponticorvo A, Cardenas D, Dunn A K et al. Laser speckle contrast imaging of blood flow in rat retinas using an endoscope[J]. Journal of Biomedical Optics, 18, 090501(2013).
[39] Hirose S, Saito W, Yoshida K et al. Elevated choroidal blood flow velocity during systemic corticosteroid therapy in Vogt-Koyanagi-Harada disease[J]. Acta Ophthalmologica, 86, 902-907(2008).
[40] Saito M, Yoshida K, Saito W et al. Astaxanthin increases choroidal blood flow velocity[J]. Graefe’s Archive for Clinical and Experimental Ophthalmology, 250, 239-245(2012).
[41] Matsumoto M, Suzuma K, Fukazawa Y et al. Retinal blood flow levels measured by laser speckle flowgraphy in patients who received intravitreal bevacizumab injection for macular edema secondary to central retinal vein occlusion[J]. Retinal Cases & Brief Reports, 8, 60-66(2014).
[42] Iwase T, Kobayashi M, Yamamoto K et al. Change in choroidal blood flow and choroidal morphology due to segmental scleral buckling in eyes with rhegmatogenous retinal detachment[J]. Scientific Reports, 7, 5997(2017).
[43] Dunn A K, Bolay H, Moskowitz M A et al. Dynamic imaging of cerebral blood flow using laser speckle[J]. Journal of Cerebral Blood Flow & Metabolism, 21, 195-201(2001).
[44] Dirnagl U, Kaplan B, Jacewicz M et al. Continuous measurement of cerebral cortical blood flow by laser-Doppler flowmetry in a rat stroke model[J]. Journal of Cerebral Blood Flow and Metabolism: Official Journal of the International Society of Cerebral Blood Flow and Metabolism, 9, 589-596(1989).
[45] Sakurada O, Kennedy C J, Jehle J W et al. Measurement of local cerebral blood flow with iodo[14C]antipyrine[J]. The American Journal of Physiology, 234, H59-H66(1978).
[46] Towle E L, Richards L M, Kazmi S M S et al. Comparison of indocyanine green angiography and laser speckle contrast imaging for the assessment of vasculature perfusion[J]. Neurosurgery, 71, 1023-1030(2012).
[47] Lindner P, Thelen M. Characterization of cerebral blood flow by determining the vascular mean transit time of brain tissue using DSA[J]. RoFo: Fortschritte Auf Dem Gebiete Der Rontgenstrahlen Und Der Nuklearmedizin, 146, 72-76(1987).
[48] Ayata C, Dunn A K, Gursoy-Özdemir Y et al. Laser speckle flowmetry for the study of cerebrovascular physiology in normal and ischemic mouse cortex[J]. Journal of Cerebral Blood Flow & Metabolism, 24, 744-755(2004).
[49] Zhou C, Shimazu T, Durduran T et al. Acute functional recovery of cerebral blood flow after forebrain ischemia in rat[J]. Journal of Cerebral Blood Flow & Metabolism, 28, 1275-1284(2008).
[50] Durduran T, Burnett M G, Yu G Q et al. Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry[J]. Journal of Cerebral Blood Flow and Metabolism: Official Journal of the International Society of Cerebral Blood Flow and Metabolism, 24, 518-525(2004).
[51] Li N, Jia X F, Murari K et al. High spatiotemporal resolution imaging of the neurovascular response to electrical stimulation of rat peripheral trigeminal nerve as revealed by in vivo temporal laser speckle contrast[J]. Journal of Neuroscience Methods, 176, 230-236(2009).
[52] Sakadzić S, Yuan S, Dilekoz E et al. Simultaneous imaging of cerebral partial pressure of oxygen and blood flow during functional activation and cortical spreading depression[J]. Applied Optics, 48, D169-D177(2009).
[53] Hecht N, Woitzik J, Dreier J P et al. Intraoperative monitoring of cerebral blood flow by laser speckle contrast analysis[J]. Neurosurgical Focus, 27, E11(2009).
[54] Hecht N, Woitzik J, König S et al. Laser speckle imaging allows real-time intraoperative blood flow assessment during neurosurgical procedures[J]. Journal of Cerebral Blood Flow and Metabolism: Official Journal of the International Society of Cerebral Blood Flow and Metabolism, 33, 1000-1007(2013).
[55] Hecht N, Müller M M, Sandow N et al. Infarct prediction by intraoperative laser speckle imaging in patients with malignant hemispheric stroke[J]. Journal of Cerebral Blood Flow and Metabolism: Official Journal of the International Society of Cerebral Blood Flow and Metabolism, 36, 1022-1032(2016).
[56] Parthasarathy A B, Weber E L, Richards L M et al. Laser speckle contrast imaging of cerebral blood flow in humans during neurosurgery: a pilot clinical study[J]. Journal of Biomedical Optics, 15, 066030(2010).
[57] Sen C K, Ghatak S, Gnyawali S C et al. Cutaneous imaging technologies in acute burn and chronic wound care[J]. Plastic and Reconstructive Surgery, 138, 119S-128S(2016).
[58] Ono I, Ohura T, Murazumi M et al. A study on the effectiveness of a thromboxane synthetase inhibitor (OKY-046) in increasing the survival length of skin flaps[J]. Plastic and Reconstructive Surgery, 86, 1164-1173(1990).
[59] Stewart C J, Frank R, Forrester K R et al. A comparison of two laser-based methods for determination of burn scar perfusion: laser Doppler versus laser speckle imaging[J]. Burns, 31, 744-752(2005).
[60] Mirdell R, Iredahl F, Sjöberg F et al. Microvascular blood flow in scalds in children and its relation to duration of wound healing: a study using laser speckle contrast imaging[J]. Burns, 42, 648-654(2016).
[61] Ruaro B, Smith V, Sulli A et al. Innovations in the assessment of primary and secondary Raynaud’s phenomenon[J]. Frontiers in Pharmacology, 10, 360(2019).
[62] Ruaro B, Sulli A, Alessandri E et al. Laser speckle contrast analysis: a new method to evaluate peripheral blood perfusion in systemic sclerosis patients[J]. Annals of the Rheumatic Diseases, 73, 1181-1185(2014).
[63] Ruaro B, Sulli A, Pizzorni C et al. Correlations between blood perfusion and dermal thickness in different skin areas of systemic sclerosis patients[J]. Microvascular Research, 115, 28-33(2018).
[64] Moy W J, Ma G, Kelly K M et al. Hemoporfin-mediated photodynamic therapy on normal vasculature: implications for phototherapy of port-wine stain birthmarks[J]. Journal of Clinical and Translational Research, 2, 107-111(2016).
[65] Ren J, Li P C, Zhao H Y et al. Assessment of tissue perfusion changes in port wine stains after vascular targeted photodynamic therapy: a short-term follow-up study[J]. Lasers in Medical Science, 29, 781-788(2014).
[66] Choi B, Tan W B, Jia W C et al. The role of laser speckle imaging in port-wine stain research: recent advances and opportunities[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 6800812(2016).
[67] Nguyen C D, Hult J, Sheikh R et al. Blood perfusion in human eyelid skin flaps examined by laser speckle contrast imaging-importance of flap length and the use of diathermy[J]. Ophthalmic Plastic and Reconstructive Surgery, 34, 361-365(2018).
[68] To C, Rees-Lee J E, Gush R J et al. Intraoperative tissue perfusion measurement by laser speckle imaging: a potential aid for reducing postoperative complications in free flap breast reconstruction[J]. Plastic and Reconstructive Surgery, 143, 287e-292e(2019).
[69] Kelman Y T, Asraf S, Ozana N et al. Optical tissue probing: human skin hydration detection by speckle patterns analysis[J]. Biomedical Optics Express, 10, 4874-4883(2019).
[70] Jia Y W, Yang H, Li R et al. Measurement of physical therapy efficiency of traditional Chinese medicine by laser speckle blood flow imaging[J]. Optics and Precision Engineering, 25, 1410-1417(2017).
[71] Li B, Tian J P, Zhang S et al. Effect of bloodletting acupuncture at twelve jing-well points of hand on microcirculatory disturbance in mice with traumatic brain injury[J]. Chinese Acupuncture & Moxibustion, 39, 1075-1080(2019).
[72] Folkman J. Tumor angiogenesis: therapeutic implications[J]. The New England Journal of Medicine, 285, 1182-1186(1971).
[73] Kim K W, Lee J M, Jeon Y S et al. Vascular disrupting effect of CKD-516: preclinical study using DCE-MRI[J]. Investigational New Drugs, 31, 1097-1106(2013).
[74] Tozer G M, Prise V E, Wilson J et al. Mechanisms associated with tumor vascular shut-down induced by combretastatin A-4 phosphate: intravital microscopy and measurement of vascular permeability[J]. Cancer Research, 61, 6413-6422(2001).
[75] Kalchenko V, Preise D, Bayewitch M et al. In vivo dynamic light scattering microscopy of tumour blood vessels[J]. Journal of Microscopy, 228, 118-122(2007).
[76] Zhu D, Lu W, Weng Y et al. Monitoring thermal-induced changes in tumor blood flow and microvessels with laser speckle contrast imaging[J]. Applied Optics, 46, 1911-1917(2007).
[77] Rege A, Seifert A C, Schlattman D et al. Longitudinal in vivo monitoring of rodent glioma models through thinned skull using laser speckle contrast imaging[J]. Journal of Biomedical Optics, 17, 126017(2012).
[78] Robl B, Botter S M, Pellegrini G et al. Evaluation of intraarterial and intravenous cisplatin chemotherapy in the treatment of metastatic osteosarcoma using an orthotopic xenograft mouse model[J]. Journal of Experimental & Clinical Cancer Research, 35, 113(2016).
[79] Briers J D. Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging[J]. Physiological Measurement, 22, R35-R66(2001).
[80] Pion E, Asam C, Feder A L et al. Laser speckle contrast analysis (LASCA) technology for the semiquantitative measurement of angiogenesis in in-ovo-tumor-model[J]. Microvascular Research, 133, 104072(2021).