• Optical Instruments
  • Vol. 46, Issue 1, 63 (2024)
Zien YU1,2, Haoyi YU1, and Qiming ZHANG1,*
Author Affiliations
  • 1Institute of Photonic Chips, University of Shanghai for Science and Technology, Shanghai 200093, China
  • 2School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
  • show less
    DOI: 10.3969/j.issn.1005-5630.202303080044 Cite this Article
    Zien YU, Haoyi YU, Qiming ZHANG. Design of Fresnel lens based on graphene oxide film[J]. Optical Instruments, 2024, 46(1): 63 Copy Citation Text show less
    References

    [1] GEIM A K, GRIGORIEVA I V. Van der Waals heterostructures[J]. Nature, 499, 419-425(2013).

    [2] GEIM A K, NOVOSELOV K S. The rise of graphene[J]. Nature Materials, 6, 183-191(2007).

    [3] BOLOTIN K I, SIKES K J, JIANG Z, et al. Ultrahigh electron mobility in suspended graphene[J]. Solid State Communications, 146, 351-355(2008).

    [4] MOROZOV S V, NOVOSELOV K S, KATSNELSON M I, et al. Giant intrinsic carrier mobilities in graphene and its bilayer[J]. Physical Review Letters, 100, 016602(2008).

    [5] LEE C, WEI X D, KYSAR J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 321, 385-388(2008).

    [6] BALANDIN A A, GHOSH S, BAO W Z, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters, 8, 902-907(2008).

    [7] KRISHNAN D, KIM F, LUO J Y, et al. Energetic graphene oxide: challenges and opportunities[J]. Nano Today, 7, 137-152(2012).

    [8] KIM J, COTE L J, HUANG J X. Two dimensional soft material: new faces of graphene oxide[J]. Accounts of Chemical Research, 45, 1356-1364(2012).

    [9] MA X F, ZACHARIAH M R, ZANGMEISTER C D. Reduction of suspended graphene oxide single sheet nanopaper: the effect of crumpling[J]. The Journal of Physical Chemistry C, 117, 3185-3191(2013).

    [10] SOBON G, SOTOR J, JAGIELLO J, et al. Graphene oxide vs. reduced graphene oxide as saturable absorbers for Er-doped passively mode-locked fiber laser[J]. Optics Express, 20, 19463-19473(2012).

    [11] DREYER D R, PARK S, BIELAWSKI C W, et al. The chemistry of graphene oxide[J]. Chemical Society Reviews, 39, 228-240(2010).

    [12] LI X P, REN H R, CHEN X, et al. Athermally photoreduced graphene oxides for three-dimensional holographic images[J]. Nature Communications, 6, 6984(2015).

    [13] DAN Y P, LU Y, KYBERT N J, et al. Intrinsic response of graphene vapor sensors[J]. Nano Letters, 9, 1472-1475(2009).

    [14] CHEN M, WAN Z F, DONG H, et al. Direct laser writing of graphene oxide for ultra-low power consumption memristors in reservoir computing for digital recognition[J]. National Science Open, 1, 20220020(2022).

    [15] YU H Y, ZHANG Q M, CUMMING B P, et al. Neuron-inspired Steiner tree networks for 3D low-density metastructures[J]. Advanced Science, 8, 2100141(2021).

    [16] YU H Y, ZHANG Q M, CHEN X, et al. Three-dimensional direct laser writing of biomimetic neuron interfaces in the era of artificial intelligence: principles, materials, and applications[J]. Advanced Photonics, 4, 034002(2022).

    [17] CHEN X, GU M. Two-beam ultrafast laser scribing of graphene patterns with 90-nm subdiffraction feature size[J]. Ultrafast Science, 2022, 0001(2022).

    [18] TIAN H, CHEN H Y, REN T L, et al. Cost-effective, transfer-free, flexible resistive random access memory using laser-scribed reduced graphene oxide patterning technology[J]. Nano Letters, 14, 3214-3219(2014).

    [19] ZHAO F, CHENG H H, HU Y, et al. Functionalized graphitic carbon nitride for metal-free, flexible and rewritable nonvolatile memory device via direct laser-writing[J]. Scientific Reports, 4, 5882(2014).

    [20] ROMERO F J, TORAL-LOPEZ A, OHATA A, et al. Laser-fabricated reduced graphene oxide memristors[J]. Nanomaterials, 9, 897(2019).

    [21] YEE K. Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media[J]. IEEE Transactions on Antennas and Propagation, 14, 302-307(1966).

    [22] ZHENG X R, JIA B H, LIN H, et al. Highly efficient and ultra-broadband graphene oxide ultrathin lenses with three-dimensional subwavelength focusing[J]. Nature Communications, 6, 8433(2015).

    [23] GU M. Advanced optical imaging they[M]. Berlin: Springer, 2000: 15 19.