• Photonics Research
  • Vol. 10, Issue 10, B14 (2022)
Sicen Tao1,2, Tao Hou1, Yali Zeng1,2, Guangwei Hu2..., Zixun Ge1, Junke Liao1, Shan Zhu1, Tan Zhang2, Cheng-Wei Qiu2,3,* and Huanyang Chen1,4,*|Show fewer author(s)
Author Affiliations
  • 1Department of Physics, Institute of Electromagnetics and Acoustics, College of Physical Science and Technology, Xiamen University, Xiamen 361005, China
  • 2Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
  • 3e-mail: chengwei.qiu@nus.edu.sg
  • 4e-mail: kenyon@xmu.edu.cn
  • show less
    DOI: 10.1364/PRJ.463611 Cite this Article Set citation alerts
    Sicen Tao, Tao Hou, Yali Zeng, Guangwei Hu, Zixun Ge, Junke Liao, Shan Zhu, Tan Zhang, Cheng-Wei Qiu, Huanyang Chen, "Anisotropic Fermat’s principle for controlling hyperbolic van der Waals polaritons," Photonics Res. 10, B14 (2022) Copy Citation Text show less

    Abstract

    Transformation optics (TO) facilitates flexible designs of spatial modulation of optical materials via coordinate transformations, thus, enabling on-demand manipulations of electromagnetic waves. However, the application of TO theory in control of hyperbolic waves remains elusive due to the spatial metric signature transition from (+,+) to (-,+) of a two-dimensional hyperbolic geometry. Here, we proposed a distinct Pythagorean theorem, which leads to establishing an anisotropic Fermat’s principle. It helps to construct anisotropic geometries and is a powerful tool for manipulating hyperbolic waves at the nanoscale and polaritons. Making use of absolute instruments, the excellent collimating and focusing behaviors of naturally in-plane hyperbolic polaritons in van der Waals αMoO3 layers are demonstrated, which opens up a new way for polaritons manipulation.
    ε=μ=[10001000n2(x,y)],

    View in Article

    x=μyx,y=μxy,

    View in Article

    ε=μ=[μxμy000μyμx000μxμyn2(μyx,μxy)].

    View in Article

    w=μyx+iμxy.

    View in Article

    r=μyx2+μxy2,

    View in Article

    ds2=n2dl2=n2(μydx2+μxdy2)=εzμydx2+εzμxdy2,

    View in Article

    n(r)=2(EU),

    View in Article

    ε=μ=[μx000μy000n2(r)],

    View in Article

    ω2=(cnk)2=c2n2(kx2μy+ky2μx).

    View in Article

    {×E=iωμ0H×H=iωε0ε^E.

    View in Article

    kzd=arctan(α1ε1εykz)+arctan(α3ε3εykz)+mπ,

    View in Article

    q2=ky2=μxk02n2

    View in Article

    ddξLv=Lr,(A1)

    View in Article

    ds=nμydx2+μxdy2=nμydx2dξ2+μxdy2dξ2dξ=Ldξ.(A2)

    View in Article

    L=nμydx2dξ2+μxdy2dξ2=nμyvx2+μxvy2=n2v2.(A3)

    View in Article

    dξ=dln.(A4)

    View in Article

    v=|drdξ|=n|drdl|=n.(A5)

    View in Article

    d2rdξ2=n22.(A6)

    View in Article

    U=n22+E,(A7)

    View in Article

    iqEzEyz=iωμ0Hx,Hxz=iωε0εyEy,iqHx=iωε0εzEz,(C1)

    View in Article

    2Hxz2+(k02εyεyq2εz)Hx=0,0zd.(C2)

    View in Article

    2Hxz2+(k02ε1q2)Hx=0,zd,(C3)

    View in Article

    2Hxz2+(k02ε3q2)Hx=0,z0.(C4)

    View in Article

    Hx={[Acos(kzd)+Bsin(kzd)]exp[α1(zd)],zd,Acos(kzz)+Bsin(kzz),0zd,Aexp(α3z),z0,(C5)

    View in Article

    Ey={α1iωε0ε1[Acos(kzd)+Bsin(kzd)]exp[α1(zd)],zd,kziωε0εy[Asin(kzz)+Bcos(kzz)],0zd,α3iωε0ε3Aexp(α3z),z0.(C6)

    View in Article

    M(AB)=(α3ε3kzεyα1ε1cos(kzd)+kzεysin(kzd)α1ε1sin(kzd)kzεycos(kzd))(AB)=0.(C7)

    View in Article

    kzd=arctan(α1ε1εykz)+arctan(α3ε3εykz)+mπ.(C8)

    View in Article

    k02εyεyq2εzd=arctan(q2k02ε1ε1εzεyk02εzq2)+arctan(q2k02ε3ε3εzεyk02εzq2)+mπ.(C9)

    View in Article

    Sicen Tao, Tao Hou, Yali Zeng, Guangwei Hu, Zixun Ge, Junke Liao, Shan Zhu, Tan Zhang, Cheng-Wei Qiu, Huanyang Chen, "Anisotropic Fermat’s principle for controlling hyperbolic van der Waals polaritons," Photonics Res. 10, B14 (2022)
    Download Citation