[1] Luo S J, Huang F Y, Zhan D J et al. Development of chalcogenide glasses for infrared thermal imaging system[J]. Laser&Infrared, 40, 9-13(2010).
[2] Dai S X, Chen H G, Li M Z et al. Chalcogenide glasses and their infrared optical applications[J]. Infrared and Laser Engineering, 41, 847-852(2012).
[3] Jian Z Y, Zeng Z, Dong G Z et al. Progress in the research of chalcogenide glasses for infrared transmission[J]. Journal of Xi'an Technological University, 31, 1-8(2011).
[4] Zhao H, Jin Y L, Zu C K et al. Study progress on chalcogenide glasses surface coating technology for temperature adaptive infrared thermal imaging system[J]. Materials Review, 31, 72-76(2017).
[5] Fu X H, Huang H Y, Zhang J et al. Anti-reflection protective film of chalcogenide glass substrate and its environmental adaptability[J]. Acta Optica Sinica, 40, 2131002(2020).
[6] Fei H M. Deposition of infrared antireflection hard film on chalcogenide glass[D](2017).
[7] Jin Y L, Fu K H, Zhao H et al. Design and manufacture of infrared antireflection coatings on As40Se60 chalcogenide glass[J]. Bulletin of the Chinese Ceramic Society, 36, 94-97, 121(2017).
[8] Fu X H, Wang H F, Zhang J et al. Development of infrared antireflection coating for molded chalcogenide glass elements[J]. Acta Optica Sinica, 41, 2031003(2021).
[9] Liu B Y, Du G T, Yang X T et al. Study of ZnO film grown by MOCVD[J]. Chinese Journal of Liquid Crystals and Displays, 19, 99-102(2004).
[10] Liang H W, Yan J F, Lü Y M et al. Growth of zinc oxide single crystal thin films by plasma-assisted molecular beam epitaxy[J]. Chinese Journal of Luminescence, 25, 147-150(2004).
[11] Sun H P, Pan X Q, Du X L et al. Microstructure and crystal defects in epitaxial ZnO film grown on Ga modified (0001) sapphire surface[J]. Applied Physics Letters, 85, 4385-4387(2004).
[12] Cheng X H, Lü J G, Yue S L et al. Growth and optoelectronic properties of amorphous CuNiSnO thin films[J]. Journal of Materials Science and Engineering, 37, 876-879(2019).
[13] Chen X, Wang Y W, Wang X Y et al. Effect of titanium ion energy on surface structure during the amorphous titanium dioxide film deposition[J]. Acta Physica Sinica, 63, 246801(2014).
[14] Xu Y. Preparation, growth mechanism and mechanical property of metallic glass films[D](2010).
[15] Xu B S, Liu S C[M]. Handbook of surface engineering technology-part 1(2009).
[16] [M]. 薄膜材料应力、缺陷的形成和表面演化(2007).
Freund B L, Freund B L, Suresh S, Suresh S, 卢磊, Lu L[M]. Thin film materials: stress, defect formation and surface evolution(2007).
[17] Li L. Rethinking on “the law of the change of intermolecular repulsion and attraction”[J]. Physics Teacher, 26, 47(2005).
[18] Ye Z K. Thoughts on “the law of intermolecular repulsion and attraction”[J]. Physics Teacher, 25, 11-13(2004).
[19] He B J, Wang Q F, Liu W J et al. Exploration and application of the lowest energy principle in polymer chemistry teaching[J]. Polymer Bulletin, 141-144(2011).
[20] Wang Z L, Zhou Y P[M]. Physical chemistry(2001).
[21] Guo D S, Chen Z N, Wang D K et al. Effects of annealing temperature on crystal quality and photoelectric properties of Al-doped ZnO thin film[J]. Chinese Journal of Lasers, 46, 0403002(2019).
[22] Yang C, Fan H Q, Xi Y X et al. Effects of depositing temperatures on structure and optical properties of TiO2 film deposited by ion beam assisted electron beam evaporation[J]. Applied Surface Science, 254, 2685-2689(2008).
[23] Li S, Sun Y J, Liu G L et al. Design and fabrication of visible and infrared dual-band AR coating[J]. Journal of Synthetic Crystals, 43, 1769-1773, 1787(2014).
[24] Ding Y R, Qin G L[M]. Surface chemistry(1988).