[1] M. de Zambotti, J. Trinder, A. Silvani, I. M. Colrain, F. C. Baker. Dynamic coupling between the central and autonomic nervous systems during sleep: A review. Neurosci. Biobehav. Rev., 90, 84-103(2018).
[2] A. Silvani, G. Calandra-Buonaura, R. A. L. Dampney, P. Cortelli. Brain–heart interactions: Physiology and clinical implications. Phil. Trans. R. Soc. A., 374, 20150181(2016).
[3] R. Smith, J. F. Thayer, S. S. Khalsa, R. D. Lane. The hierarchical basis of neurovisceral integration. Neurosci. Biobehav. Rev., 75, 274-296(2017).
[4] E. Patron, R. Mennella, S. Messerotti Benvenuti, J. F. Thayer. The frontal cortex is a heart-brake: Reduction in delta oscillations is associated with heart rate deceleration. NeuroImage, 188, 403-410(2019).
[5] F. Shaffer, R. McCraty, C. L. Zerr. A healthy heart is not a metronome: An integrative review of the heart’s anatomy and heart rate variability. Front. Psychol., 5, 1-19(2014).
[6] E. Al, F. Iliopoulos, N. Forschack, T. Nierhaus, M. Grund, P. Motyka, M. Gaebler, V. V. Nikulin, A. Villringer. Heart–brain interactions shape somatosensory perception and evoked potentials. Proc. Natl. Acad. Sci. USA, 117, 10575-10584(2020).
[7] A. D. Barber, M. John, P. DeRosse, M. L. Birnbaum, T. Lencz, A. K. Malhotra. Parasympathetic arousal-related cortical activity is associated with attention during cognitive task performance. NeuroImage, 208, 116469(2020).
[8] D. Candia-Rivera, V. Catrambone, J. F. Thayer, C. Gentili, G. Valenza. Cardiac sympathetic-vagal activity initiates a functional brain–body response to emotional arousal. Proc. Natl. Acad. Sci. USA, 119, e2119599119(2022).
[9] R. V. Raut, A. Z. Snyder, A. Mitra, D. Yellin, N. Fujii, R. Malach, M. E. Raichle. Global waves synchronize the brain’s functional systems with fluctuating arousal. Sci. Adv., 7, eabf2709(2021).
[10] T. Lees, T. Chalmers, D. Burton, E. Zilberg, T. Penzel, S. Lal, S. Lal. Electrophysiological brain-cardiac coupling in train drivers during monotonous driving. Int. J. Environ. Res. Public Health, 18, 3741(2021).
[11] E. Melo, J. Fiel, R. Milhomens, T. Ribeiro, R. Navegantes, F. Gomes, B. Duarte Gomes, A. Pereira. Dynamic coupling between the central and autonomic cardiac nervous systems in patients with refractory epilepsy: A pilot study. Front. Neurol., 13, 904052(2022).
[12] J. F. Thayer, F. Åhs, M. Fredrikson, J. J. Sollers, T. D. Wager. A meta-analysis of heart rate variability and neuroimaging studies: Implications for heart rate variability as a marker of stress and health. Neurosci. Biobehav. Rev., 36, 747-756(2012).
[13] G. Alba, J. Vila, B. Rey, P. Montoya, M. Á. Muñoz. The relationship between heart rate variability and electroencephalography functional connectivity variability is associated with cognitive flexibility. Front. Hum. Neurosci., 13, 64(2019).
[14] J. P. Fuentes-García, S. Villafaina, D. Collado-Mateo, R. de la Vega, P. R. Olivares, V. J. Clemente-Suárez. Differences between high vs. low performance chess players in heart rate variability during chess problems. Front. Psychol., 10, 409(2019).
[15] B. Thielmann, J. Hartung, I. Böckelmann. Objective assessment of mental stress in individuals with different levels of effort reward imbalance or overcommitment using heart rate variability: A systematic review. Syst. Rev., 11, 48(2022).
[16] M. D. Stephenson, A. G. Thompson, J. J. Merrigan, J. D. Stone, J. A. Hagen. Applying heart rate variability to monitor health and Pperformance in tactical personnel: A narrative review. Int. J. Environ. Res. Public Health, 18, 8143(2021).
[17] G. Forte, F. Favieri, M. Casagrande. Heart rate variability and cognitive function: A systematic review. Front. Neurosci., 13, 710(2019).
[18] S. Byun, A. Y. Kim, E. H. Jang, S. Kim, K. W. Choi, H. Y. Yu, H. J. Jeon. Detection of major depressive disorder from linear and nonlinear heart rate variability features during mental task protocol. Comput. Biol. Med., 112, 103381(2019).
[19] M. S. Kim, J. H. Yoon, J. M. Hong. Early differentiation of dementia with Lewy bodies and Alzheimer’s disease: Heart rate variability at mild cognitive impairment stage. Clin. Neurophysiol., 129, 1570-1578(2018).
[20] M. Kobayashi, G. Sun, T. Shinba, T. Matsui, T. Kirimoto. Development of a mental disorder screening system using support vector machine for classification of heart rate variability measured from single-lead electrocardiography. 2019 IEEE Sensors Applications Symp. (SAS), 1-6(2019).
[21] F. Shaffer, J. P. Ginsberg. An overview of heart rate variability metrics and norms. Front. Public Health, 5, 258(2017).
[22] E. Mejía-Mejía, K. Budidha, T. Y. Abay, J. M. May, P. A. Kyriacou. Heart rate variability (HRV) and pulse rate variability (PRV) for the assessment of autonomic responses. Front. Physiol., 11, 779(2020).
[23] M. Yeo, S. Lim, G. Yoon. Analysis of biosignals during immersion in computer games. J. Med. Syst., 42, 3(2018).
[24] E. Ouchi, H. Usuniwa, K. Nemoto, T. Inagaki. Simultaneous measurement under resting-state of autonomic nervous activity and brain activity by near-infrared spectroscopy alone. Infrared Phys. Technol., 122, 104065(2022).
[25] I. Trajkovic, F. Scholkmann, M. Wolf. Estimating and validating the interbeat intervals of the heart using near-infrared spectroscopy on the human forehead. J. Biomed. Opt., 16, 087002(2011).
[26] E. Gil, M. Orini, R. Bailón, J. M. Vergara, L. Mainardi, P. Laguna. Photoplethysmography pulse rate variability as a surrogate measurement of heart rate variability during non-stationary conditions. Physiol. Meas., 31, 1271-1290(2010).
[27] P. Pinti, I. Tachtsidis, A. Hamilton, J. Hirsch, C. Aichelburg, S. Gilbert, P. W. Burgess. The present and future use of functional near-infrared spectroscopy (fNIRS) for cognitive neuroscience. Ann. N.Y. Acad. Sci., 1464, 5-29(2020).
[28] J. Sakai. Functional near-infrared spectroscopy reveals brain activity on the move. Proc. Natl. Acad. Sci. U.S.A., 119, e2208729119(2022).
[29] I. Tachtsidis, F. Scholkmann. False positives and false negatives in functional near-infrared spectroscopy: Issues, challenges, and the way forward. Neurophotonics, 3, 031405(2016).
[30] E. Mejía-Mejía, J. M. May, M. Elgendi, P. A. Kyriacou. Differential effects of the blood pressure state on pulse rate variability and heart rate variability in critically ill patients. NPJ Digit. Med., 4, 82(2021).
[31] J. S. Burma, A. P. Lapointe, A. Soroush, I. K. Oni, J. D. Smirl, J. F. Dunn. Insufficient sampling frequencies skew heart rate variability estimates: Implications for extracting heart rate metrics from neuroimaging and physiological data. J. Biomed. Inf., 123, 103934(2021).
[32] A. Schäfer, J. Vagedes. How accurate is pulse rate variability as an estimate of heart rate variability? A review on studies comparing photoplethysmographic technology with an electrocardiogram. Int. J. Cardiol., 166, 15-29(2013).
[33] N. Hakimi, S. K. Setarehdan. Stress assessment by means of heart rate derived from functional near-infrared spectroscopy. J. Biomed. Opt., 23, 1(2018).
[34] G. Bauernfeind, S. C. Wriessnegger, I. Daly, G. R. Müller-Putz. Separating heart and brain: On the reduction of physiological noise from multichannel functional near-infrared spectroscopy (fNIRS) signals. J. Neural Eng., 11, 056010(2014).
[35] E. E. Condy, B. H. Friedman, A. Gandjbakhche. Probing neurovisceral integration via functional near-infrared spectroscopy and heart rate variability. Front. Neurosci., 14, 575589(2020).
[36] S. Gaetan, V. Bréjard, A. Bonnet. Video games in adolescence and emotional functioning: Emotion regulation, emotion intensity, emotion expression, and alexithymia. Comput. Hum. Behav., 61, 344-349(2016).
[37] M. J. Koepp, R. N. Gunn, A. D. Lawrence, V. J. Cunningham, A. Dagher, T. Jones, D. J. Brooks, C. J. Bench, P. M. Grasby. Evidence for striatal dopamine release during a video game. Nature, 393, 266-268(1998).
[38] M. Palaus, E. M. Marron, R. Viejo-Sobera, D. Redolar-Ripoll. Neural basis of video gaming: A systematic review. Front. Hum. Neurosci., 11, 248(2017).
[39] A. M. Porter, P. Goolkasian. Video games and stress: How stress appraisals and game content affect cardiovascular and emotion outcomes. Front. Psychol., 10, 967(2019).
[40] S. J. Hong, D. Lee, J. Park, K. Namkoong, J. Lee, D. P. Jang, J. E. Lee, Y.-C. Jung, I. Y. Kim. Altered heart rate variability during gameplay in internet gaming disorder: The impact of situations during the game. Front. Psychiatry, 9, 429(2018).
[41] J. A. Anguera, J. Boccanfuso, J. L. Rintoul, O. Al-Hashimi, F. Faraji, J. Janowich, E. Kong, Y. Larraburo, C. Rolle, E. Johnston, A. Gazzaley. Video game training enhances cognitive control in older adults. Nature, 501, 97-101(2013).
[42] K. B. Krarup, H. B. Krarup. The physiological and biochemical effects of gaming: A review. Environ. Res., 184, 109344(2020).
[43] C. M. Lawley, J. R. Skinner, C. Turner. Syncope due to ventricular arrhythmia triggered by electronic gaming. N. Engl. J. Med., 381, 1180-1181(2019).
[44] A. K. Singh, M. Okamoto, H. Dan, V. Jurcak, I. Dan. Spatial registration of multichannel multi-subject fNIRS data to MNI space without MRI. NeuroImage, 27, 842-851(2005).
[45] F. Scholkmann, J. Boss, M. Wolf. An efficient algorithm for automatic peak detection in noisy periodic and quasi-periodic signals. Algorithms, 5, 588-603(2012).
[46] K. E. Jang, S. Tak, J. Jung, J. Jang, Y. Jeong, J. C. Ye. Wavelet minimum description length detrending for near-infrared spectroscopy. J. Biomed. Opt., 14, 034004(2009).
[47] T. J. Huppert, S. G. Diamond, M. A. Franceschini, D. A. Boas. HomER: A review of time-series analysis methods for near-infrared spectroscopy of the brain. Appl. Opt., 48, D280(2009).
[48] F. Scholkmann, S. Spichtig, T. Muehlemann, M. Wolf. How to detect and reduce movement artifacts in near-infrared imaging using moving standard deviation and spline interpolation. Physiol. Meas., 31, 649-662(2010).
[49] S. B. Erdoğan, M. A. Yücel, A. Akın. Analysis of task-evoked systemic interference in fNIRS measurements: Insights from fMRI. NeuroImage, 87, 490-504(2014).
[50] V. Scarapicchia, C. Brown, C. Mayo, J. R. Gawryluk. Functional magnetic resonance imaging and nunctional near-infrared spectroscopy: Insights from combined recording studies. Front. Hum. Neurosci., 11, 419(2017).
[51] M. P. Tarvainen, J.-P. Niskanen, J. A. Lipponen, P. O. Ranta-aho, P. A. Karjalainen. Kubios HRV — Heart rate variability analysis software. Comput. Methods Programs Biomed., 113, 210-220(2014).
[52] M. Brennan, M. Palaniswami, P. Kamen. Do existing measures of Poincare plot geometry reflect nonlinear features of heart rate variability. IEEE Trans. Biomed. Eng., 48, 1342-1347(2001).
[53] M. Brennan, M. Palaniswami, P. Kamen. Poincaré plot interpretation using a physiological model of HRV based on a network of oscillators. Am. J. Physiol. Heart Circ. Physiol., 283, H1873-H1886(2002).
[54] A. B. Ciccone, J. A. Siedlik, J. M. Wecht, J. A. Deckert, N. D. Nguyen, J. P. Weir. Reminder: RMSSD and SD1 are identical heart rate variability metrics. Muscle Nerve, 56, 674-678(2017).
[55] H. Zhou, J. J. Gómez-Hernández, H.-J. Hendricks Franssen, L. Li. An approach to handling non-Gaussianity of parameters and state variables in ensemble Kalman filtering. Adv. Water Resour., 34, 844-864(2011).
[56] G. Pfurtscheller, K. J. Blinowska, M. Kaminski, B. Rassler, W. Klimesch. Processing of fMRI-related anxiety and information flow between brain and body revealed a preponderance of oscillations at 0.15/0.16Hz. Sci. Rep., 12, 9117(2022).
[57] M. Keller, H. Pelz, V. Perlitz, J. Zweerings, E. Röcher, H. I. Baqapuri, K. Mathiak. Neural correlates of fluctuations in the intermediate band for heart rate and respiration are related to interoceptive perception. Psychophysiology, 57, e13594(2020).
[58] L. Holper, E. Seifritz, F. Scholkmann. Short-term pulse rate variability is better characterized by functional near-infrared spectroscopy than by photoplethysmography. J. Biomed. Opt., 21, 091308(2016).
[59] A. R. Subhani, Xia Likun, A. S. Malik. Association of autonomic nervous system and EEG scalp potential during playing 2D Grand Turismo 5. 2012 Annual Int. Conf. IEEE Engineering in Medicine and Biology Society, 3420-3423(2012).
[60] I. Tachtsidis, A. Papaioannou, S. Van Huffel et al. Oxygen Transport to Tissue XXXV, 89-95(2013).
[61] M. Zvyagintsev, M. Klasen, R. Weber, P. Sarkheil, F. Esposito, K. A. Mathiak, M. Schwenzer, K. Mathiak. Violence-related content in video game may lead to functional connectivity changes in brain networks as revealed by fMRI-ICA in young men. Neuroscience, 320, 247-258(2016).
[62] T. Liu, H. Saito, M. Oi. Distinctive activation patterns under intrinsically versus extrinsically driven cognitive loads in prefrontal cortex: A near-infrared spectroscopy study using a driving video game. Neurosci. Lett., 506, 220-224(2012).
[63] K. Yoshida, D. Sawamura, Y. Inagaki, K. Ogawa, K. Ikoma, S. Sakai. Brain activity during the flow experience: A functional near-infrared spectroscopy study. Neurosci. Lett., 573, 30-34(2014).
[64] C. A. Anderson, A. Shibuya, N. Ihori, E. L. Swing, B. J. Bushman, A. Sakamoto, H. R. Rothstein, M. Saleem. Violent video game effects on aggression, empathy, and prosocial behavior in Eastern and Western countries: A meta-analytic review. Psychol. Bull., 136, 151-173(2010).
[65] S. Ishaque, A. Rueda, B. Nguyen, N. Khan, S. Krishnan. Physiological signal analysis and classification of stress from virtual reality video game. 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), 867-870(2020).
[66] D. Lee, S. J. Hong, Y.-C. Jung, J. Park, I. Y. Kim, K. Namkoong. Altered heart rate variability during gaming in internet gaming disorder. Cyberpsychol. Behav. Soc. Netw., 21, 259-267(2018).
[67] M. Kozhevnikov, Y. Li, S. Wong, T. Obana, I. Amihai. Do enhanced states exist? Boosting cognitive capacities through an action video-game. Cognition, 173, 93-105(2018).
[68] T. F. da Silva, M. do S. Cirilo-Souza, M. F. de Souza, G. Veloso Neto, M. A. P. dos Santos, A. S. Silva. Energy demand in an active videogame session and the potential to promote hypotension after exercise in hypertensive women. PLoS One, 13, e0207505(2018).
[69] T. Myllymäki, H. Rusko, H. Syväoja, T. Juuti, M.-L. Kinnunen, H. Kyröläinen. Effects of exercise intensity and duration on nocturnal heart rate variability and sleep quality. Eur. J. Appl. Physiol., 112, 801-809(2012).
[70] Y. Yoshida, E. Yuda, K. Yokoyama, J. Hayano. Evaluation of nocturnal heart rate variability for strenuous exercise day using wearable photoelectric pulse wave sensor. J. Exerc. Rehabil., 14, 633-637(2018).
[71] Y. Ye, T. K. Tong, Z. Kong, E. D. Tao, X. Ying, J. Nie. Cardiac autonomic disturbance following sprint-interval exercise in untrained young males: Does exercise volume matter. J. Exerc. Sci. Fit., 20, 32-39(2022).
[72] J. H. Coote. Recovery of heart rate following intense dynamic exercise: Recovery of heart rate after exercise. Exp. Physiol., 95, 431-440(2010).
[73] J. Stanley, J. M. Peake, M. Buchheit. Cardiac parasympathetic reactivation following exercise: Implications for training prescription. Sports Med., 43, 1259-1277(2013).
[74] T. P. de Oliveira, R. de Alvarenga Mattos, R. B. F. da Silva, R. A. Rezende, J. R. P. de Lima. Absence of parasympathetic reactivation after maximal exercise. Clin. Physiol. Funct. Imaging, 33, 143-149(2013).
[75] L. N. Whitehurst, N. Cellini, E. A. McDevitt, K. A. Duggan, S. C. Mednick. Autonomic activity during sleep predicts memory consolidation in humans. Proc. Natl. Acad. Sci. USA, 113, 7272-7277(2016).
[76] K. Spiegelhalder, L. Fuchs, J. Ladwig, S. D. Kyle, C. Nissen, U. Voderholzer, B. Feige, D. Riemann. Heart rate and heart rate variability in subjectively reported insomnia: Heart rate variability in primary insomnia. J. Sleep Res., 20, 137-145(2011).
[77] A. C. Yang, S.-J. Tsai, C.-H. Yang, C.-H. Kuo, T.-J. Chen, C.-J. Hong. Reduced physiologic complexity is associated with poor sleep in patients with major depression and primary insomnia. J. Affect. Disord., 131, 179-185(2011).
[78] S. A. Gandaputra, I. Waluyo, F. Efendi, J.-Y. Wang. Insomnia status of middle school students in indonesia and its association with playing games before sleep: Gender difference. Int. J. Environ. Res. Public Health, 18, 691(2021).
[79] D. L. King, M. Gradisar, A. Drummond, N. Lovato, J. Wessel, G. Micic, P. Douglas, P. Delfabbro. The impact of prolonged violent video-gaming on adolescent sleep: An experimental study. J. Sleep Res., 22, 137-143(2013).
[80] E. Altintas, Y. Karaca, T. Hullaert, P. Tassi. Sleep quality and video game playing: Effect of intensity of video game playing and mental health. Psychiatry. Res., 273, 487-492(2019).
[81] C.-Y. Lin, M. N. Potenza, A. Broström, A. H. Pakpour. Internet gaming disorder, psychological distress, and insomnia in adolescent students and their siblings: An actor-partner interdependence model approach. Addict. Behav. Rep., 13, 100332(2021).
[82] S. Fazeli, I. Mohammadi Zeidi, C.-Y. Lin, P. Namdar, M. D. Griffiths, D. K. Ahorsu, A. H. Pakpour. Depression, anxiety, and stress mediate the associations between internet gaming disorder, insomnia, and quality of life during the COVID-19 outbreak. Addict. Behav. Rep., 12, 100307(2020).
[83] H. Y. Wong, H. Y. Mo, M. N. Potenza, M. N. M. Chan, W. M. Lau, T. K. Chui, A. H. Pakpour, C.-Y. Lin. Relationships between severity of internet gaming disorder, severity of problematic social media use, sleep quality and psychological distress. Int. J. Environ. Res. Public Health, 17, 1879(2020).
[84] Y.-C. Cheng, Y.-C. Huang, W.-L. Huang. Can heart rate variability be viewed as a biomarker of problematic internet use? A systematic review and meta-analysis. Appl. Psychophysiol. Biofeedback, 48, 1-10(2023).
[85] N. Kim, T. L. Hughes, C. G. Park, L. Quinn, I. D. Kong. Altered autonomic functions and distressed personality traits in male adolescents with internet gaming addiction. Cyberpsychol. Behav. Soc. Netw., 19, 667-673(2016).
[86] X. Yu, C. Zhang, J. Zhang. Causal interactions between the cerebral cortex and the autonomic nervous system. Sci. China Life Sci., 57, 532-538(2014).