[1] Agrawal G P. Nonlinear fiber optics[M]. San Diego: Academic Press, 2001.
[2] Hojfeldt S, Bischoff S, Mork J. All-optical wavelength conversion and signal regeneration using an electroabsorption modulator[J]. Journal of Lightwave Technology, 2000, 18(8): 1121-1127.
[3] Yamashita S, Shahed M. Optical 2R regeneration using cascaded fiber four-wave mixing with suppressed spectral spread[J]. IEEE Photonics Technology Letters, 2006, 18(9): 1064-1066.
[4] Bogoni A, Wu X, Nuccio S R, et al. 640 Gb/s all-optical regenerator based on a periodically poled lithium niobate waveguide[J]. Journal of Lightwave Technology, 2012, 30(12): 1829-1834.
[5] Yan L S, Willner A E, Wu X X, et al. All-optical signal processing for ultrahigh speed optical systems and networks[J]. Journal of Lightwave Technology, 2012, 30(24): 3760-3770.
[6] Wabnitz S, Eggleton B J. All-optical signal processing: data communication and storage applications[M]. Berlin: Springer, 2015.
[7] Mamyshev P V. All-optical data regeneration based on self-phase modulation effect[C]∥ECOC′98 24th European Conference on Optical Communication, September 20-24, 1998, Madrid, Spain. Spain: IEEE, 1998, 1: 475-476.
[8] Suzuki J, Tanemura T, Kikuchi K. All-optical regenerator based on XPM-induced wavelength shift in highly-nonlinear fiber at 40 Gb/s[J]. Lasers and Electro-Optics, 2005, 1: 300-302.
[9] Ciaramella E, Curti F, Trillo S. All-optical signal reshaping by means of four-wave mixing in optical fibers[J]. IEEE Photonics Technology Letters, 2001, 13(2): 142-144.
[10] Qi J, Chi N, Zheng Y, et al. A novel method for wavelength conversion with dual-pump four-wave mixing in a semiconductor optical amplifier[J]. Chinese Journal of Lasers B, 2000, B9(6): 488-492.
[11] Zhou X Y, Wu B J, Wen F, et al. Investigation of crosstalk suppression techniques for multi-wavelength regeneration based on data-pump FWM[J]. Optics Communications, 2013, 308: 1-6.
[12] Geng Y, Wu B, Wen F, et al. Multi-wavelength regeneration experiments using clock-pump FWM in silicon waveguides[C]∥Asia Communications and Photonics Conference, November 2-5, 2016, Wuhan, China. Washington: Optical Society of America, 2016: ATh2H.4.
[14] Ito C, Monfils I, Cartledge J. All-optical 3R regeneration using higher-order four-wave mixing in a highly nonlinear fiber with a clock-modulated optical pump signal[C]∥LEOS 2006-19th Annual Meeting of the IEEE Lasers and Electro-Optics Society, October 29-November 2, 2006, Montreal, Quebec, Canada. New York: IEEE, 2007: 223-224.
[15] Ma H D, Wu B J, Wen F, et al. Design and development of fiber-optic parametric 2R regenerators[J]. Acta Optica Sinica, 2013, 33(9): 0906005.
[16] Meng T H, Yu J L, Wang J, et al. 2×40 Gb/s all-optical 3R regeneration system using four-wave mixing in dispersion shifted fiber[J]. Acta Optica Sinica, 2012, 32(8): 0806004.
[17] Yuan H, Wu B J, Zhou X Y, et al. Equalization and regeneration of four-wave mixing for time-interleaved channel[J]. Acta Optica Sinica, 2014, 34(2): 0206002.
[18] Hainberger R, Hoshida T, Watanabe S, et al. BER estimation in optical fiber transmission systems employing all-optical 2R regenerators[J]. Journal of Lightwave Technology, 2004, 22(3): 746-754.
[20] Lu H, Wu B J, Geng Y,et al. Q-factor improvement of degenerate four-wave-mixing regenerators for ASE degraded signals[J]. Optoelectronics Letters, 2017, 13(6): 401-404.
[21] Guo Y, Zhu S L, Kuang G H, et al. Demonstration of a symmetric 40 Gbit/s TWDM-PON over 40 km passive reach using 10 G burst-mode DML and EDC for upstream transmission[J]. Journal of Optical Communications and Networking, 2015, 7(3): A363-A371.
[22] Sun S, Liu D. All-optical in-band OSNR monitors based on unphase-matched four-wave mixing[J]. Proceedings of SPIE, 2011, 8333: 83330Y.
[23] Lee J H, Jung D K, Kim C H, et al. OSNR monitoring technique using polarization-nulling method[J]. IEEE Photonics Technology Letters, 2001, 13: 88-90.
[24] Dahdah N E, Govan D S, Jamshidifar M, et al. Fiber optical parametric amplifier performance in a 1-Tb/s DWDM communication system[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2012, 18(2): 950-957.