[3] National Aeronautics and Space Administration. The intentional destruction of cosmos 1408[J]. Orbital Debris Quarterly News, 26, 1-10(2022).
[4] Lu W J. Research on key technologies of space object situation cognition and service[D], 5-8(2020).
[5] Klinkrad H, Tremayne-Smith R, Alby F et al. Europe’s eyes on the skies: the proposal for a European Space Surveillance System[J]. ESA Bulletin. Bulletin ASE. European Space Agency, 2008, 42-48(2008).
[6] Cai Y S, Gao P Q, Shen M et al. Study on monitor and diagnostic method of APOSOS 15 cm opto-electrical telescopes[J]. Astronomical Research & Technology, 15, 188-194(2018).
[7] Valicka C G, Garcia D, Staid A et al. Sensor network scheduling under uncertainty: models and benefits[R], 2(2016).
[9] Du J L. Researches on space-based surveillance system for cataloging space debris[D], 90-92(2018).
[10] Li X. A research on performance analysis of the space surveillance network[D], 6-12(2014).
[11] Feng N. The design and implementation of space target resource allocation system[D], 2-8(2017).
[12] Klinkrad H[M]. Space debris: models and risk analysis, 31-33(2006).
[13] Zhang L W. Research on key technologies of optical system arrays for wide-field observation of space targets[D], 4-6(2021).
[14] Dai K X, Feng Z L, Wan X R. Study on developments of space situation awareness system in Russia[J]. Journal of China Academy of Electronics and Information Technology, 11, 233-238(2016).
[16] Yang C W, Jiang P, Jia M H et al. Station characteristics and CSTAR data measurement of Leo space-debris monitoring at Kunlun Station, Antarctica[J]. Chinese Journal of Polar Research, 31, 128-133(2019).
[19] Herzog J, Schildknecht T, Hinze A et al. Space surveillance observations at the AIUB Zimmerwald observatory[C], SP-723(2013).
[20] Šilha J, Krajcovic S, Zigo P et al. Development and operational status of AGO70 telescope[C], 1-5(2021).
[21] Silha J. Small telescopes and their application in space debris research and space surveillance tracking[J]. Contrib. Astron. Obs. Skalnaté Pleso, 49, 307-319(2019).
[25] Creed L, Graham J, Jenkins C et al. STRATHcube: the design of a CubeSat for space debris detection using in-orbit passive bistatic radar[C], 1-8(2021).
[26] Fonder G P, Hack P J, Hughes M R. AN/FSY-3 Space fence system-sensor site one/operations center integration status and sensor site two planned capability[C], 39, 1008(2017).
[27] Huang J. Information processing technique for LEO space object surveillance based on radar system[D], 7-12(2013).
[29] Meng W D, Zhang H F, Deng H R et al. 1.06 μm wavelength based high accuracy satellite laser ranging and space debris detection[J]. Acta Physica Sinica, 69, 019502(2020).
[30] Li Z L, Zhai D S, Tang R F et al. Research and experiment of space debris daytime laser ranging based on 532 nm wavelength[J]. Laser & Optoelectronics Progress, 59, 1112003(2022).
[31] Long M L, Deng H R, Zhang H F et al. Development of multiple pulse picosecond laser with 1 kHz repetition rate and its application in space debris laser ranging[J]. Acta Optica Sinica, 41, 0614001(2021).
[32] Kloth A, Steinborn J, Schildknecht T et al. On the horizon: new ESA Laser Ranging Station (ELRS) with debris tracking capabilities[C], 1-4(2019).
[35] Kirchner G, Koidl F, Ploner M et al. Multistatic laser ranging to space debris[C], 1-9(2013).
[39] Olmos D E, Roda F E A, Middleton K et al. Space-based space surveillance operational and demonstration missions[C], SP-723(2013).
[41] Cong L T[M]. Development of world’s space based radar(2007).
[43] Anz-Meador P, Ward M, Manis A et al. The space debris sensor experiment[C], JSC-E-DAA-TN74830(2019).
[45] Hamilton J, Liou J C, Anz-Meador P D et al. Development of the space debris sensor (SDS)[C], 7, 1-11(2017).
[47] Xie Y H, Ma C, Zhong X et al. Research on space-based space target observation based on “Jilin-1” video satellite[J]. Space Debris Research, 19, 13-20(2019).
[48] Li D J, Liu B, Yin J F et al. Analysis and design of spaceborne MMW radar for space debris observation system[J]. Journal of Astronautics, 31, 2746-2753(2010).
[50] Silha J, Linder E, Hager M et al. Optical light curve observations to determine attitude states of space debris[C], 1-4(2015).
[51] Wang Y P, Niu Z D, Wang D Y et al. Simulation algorithm for space-based optical observation images considering influence of stray light[J]. Laser & Optoelectronics Progress, 59, 0229001(2022).
[53] Zhu L Y, Liu Y S, He D P et al. An efficient target detection algorithm via Karhunen-Loève transform for frequency modulated continuous wave (FMCW) radar applications[J]. IET Signal Processing, 1-11(2022).
[54] Vierinen J, Kastinen D, Markkanen J et al. 2018 Beam-park observations of space debris with the EISCAT radars[C], 1-10(2019).
[55] Li G Q, Liu J, Cheng H W. Space debris laser ranging technology and applications[J]. Space Debris Research, 20, 40-48(2020).
[56] Smith C H, Greene B. The EOS space debris tracking system[C], 2, 1008(2006).
[59] Kirchner G, Koidl F. Laser ranging to space debris from Graz laser station[J]. Vermessung and Geoinformation, 66, 151-155(2015).
[60] Long M L, Zhang H F, Deng H R et al. Laser ranging for space debris using double telescopes with kilometer-level distance[J]. Acta Optica Sinica, 40, 0228002(2020).
[61] Chen L, Liu C Z, Li Z W et al. Error analysis of space objects common-view observation positioning[J]. Acta Optica Sinica, 42, 0604001(2022).
[62] Yang X S, Pan X F, Su S J et al. Data-driven awareness technology for space target image information[J]. Acta Optica Sinica, 41, 0315002(2021).