• Laser & Optoelectronics Progress
  • Vol. 59, Issue 14, 1415010 (2022)
Jiang Tao1,†, Yunfeng Cao1,†,*, and Meng Ding2
Author Affiliations
  • 1College of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, Jiangsu , China
  • 2College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, Jiangsu , China
  • show less
    DOI: 10.3788/LOP202259.1415010 Cite this Article Set citation alerts
    Jiang Tao, Yunfeng Cao, Meng Ding. Progress of Space Debris Detection Technology[J]. Laser & Optoelectronics Progress, 2022, 59(14): 1415010 Copy Citation Text show less
    References

    [1] Mejía-Kaiser M. IADC space debris mitigation guidelines[M]. The geostationary ring, 381-389(2020).

    [3] National Aeronautics and Space Administration. The intentional destruction of cosmos 1408[J]. Orbital Debris Quarterly News, 26, 1-10(2022).

    [4] Lu W J. Research on key technologies of space object situation cognition and service[D], 5-8(2020).

    [5] Klinkrad H, Tremayne-Smith R, Alby F et al. Europe’s eyes on the skies: the proposal for a European Space Surveillance System[J]. ESA Bulletin. Bulletin ASE. European Space Agency, 2008, 42-48(2008).

    [6] Cai Y S, Gao P Q, Shen M et al. Study on monitor and diagnostic method of APOSOS 15 cm opto-electrical telescopes[J]. Astronomical Research & Technology, 15, 188-194(2018).

    [7] Valicka C G, Garcia D, Staid A et al. Sensor network scheduling under uncertainty: models and benefits[R], 2(2016).

    [8] Butkus A, Roe K, Mitchell B et al. Space surveillance network and analysis model (SSNAM) performance improvements[C], 469-473(2007).

    [9] Du J L. Researches on space-based surveillance system for cataloging space debris[D], 90-92(2018).

    [10] Li X. A research on performance analysis of the space surveillance network[D], 6-12(2014).

    [11] Feng N. The design and implementation of space target resource allocation system[D], 2-8(2017).

    [12] Klinkrad H[M]. Space debris: models and risk analysis, 31-33(2006).

    [13] Zhang L W. Research on key technologies of optical system arrays for wide-field observation of space targets[D], 4-6(2021).

    [14] Dai K X, Feng Z L, Wan X R. Study on developments of space situation awareness system in Russia[J]. Journal of China Academy of Electronics and Information Technology, 11, 233-238(2016).

    [15] Guo X Z, Gao P Q, Shen M et al. Introduction to APOSOS project: 15 cm aperture electro-optical telescopes to track space objects[J]. Advances in Space Research, 65, 1990-2002(2020).

    [16] Yang C W, Jiang P, Jia M H et al. Station characteristics and CSTAR data measurement of Leo space-debris monitoring at Kunlun Station, Antarctica[J]. Chinese Journal of Polar Research, 31, 128-133(2019).

    [17] Abercromby K J, Seitzer P, Rodriguez H M et al. Survey and chase: a new method of observations for the Michigan Orbital DEbris Survey Telescope (MODEST)[J]. Acta Astronautica, 65, 103-111(2009).

    [18] Schildknecht T, Flohrer T, Musci R et al. Statistical analysis of the ESA optical space debris surveys[J]. Acta Astronautica, 63, 119-127(2008).

    [19] Herzog J, Schildknecht T, Hinze A et al. Space surveillance observations at the AIUB Zimmerwald observatory[C], SP-723(2013).

    [20] Šilha J, Krajcovic S, Zigo P et al. Development and operational status of AGO70 telescope[C], 1-5(2021).

    [21] Silha J. Small telescopes and their application in space debris research and space surveillance tracking[J]. Contrib. Astron. Obs. Skalnaté Pleso, 49, 307-319(2019).

    [22] Muntoni G, Montisci G, Pisanu T et al. Crowded space: a review on radar measurements for space debris monitoring and tracking[J]. Applied Sciences, 11, 1364(2021).

    [23] Persico A R, Kirkland P, Clemente C et al. CubeSat-based passive bistatic radar for space situational awareness: a feasibility study[J]. IEEE Transactions on Aerospace and Electronic Systems, 55, 476-485(2018).

    [24] Theodorou I, Ilioudis C, Clemente C et al. SISAR imaging for space debris based on nanosatellites[J]. IET Radar, Sonar & Navigation, 14, 1192-1201(2020).

    [25] Creed L, Graham J, Jenkins C et al. STRATHcube: the design of a CubeSat for space debris detection using in-orbit passive bistatic radar[C], 1-8(2021).

    [26] Fonder G P, Hack P J, Hughes M R. AN/FSY-3 Space fence system-sensor site one/operations center integration status and sensor site two planned capability[C], 39, 1008(2017).

    [27] Huang J. Information processing technique for LEO space object surveillance based on radar system[D], 7-12(2013).

    [28] Courde C, Torre J M, Samain E et al. Lunar laser ranging in infrared at the Grasse laser station[J]. Astronomy & Astrophysics, 602, A90(2017).

    [29] Meng W D, Zhang H F, Deng H R et al. 1.06 μm wavelength based high accuracy satellite laser ranging and space debris detection[J]. Acta Physica Sinica, 69, 019502(2020).

    [30] Li Z L, Zhai D S, Tang R F et al. Research and experiment of space debris daytime laser ranging based on 532 nm wavelength[J]. Laser & Optoelectronics Progress, 59, 1112003(2022).

    [31] Long M L, Deng H R, Zhang H F et al. Development of multiple pulse picosecond laser with 1 kHz repetition rate and its application in space debris laser ranging[J]. Acta Optica Sinica, 41, 0614001(2021).

    [32] Kloth A, Steinborn J, Schildknecht T et al. On the horizon: new ESA Laser Ranging Station (ELRS) with debris tracking capabilities[C], 1-4(2019).

    [33] Silha J, Schildknecht T, Hinze A et al. An optical survey for space debris on highly eccentric and inclined MEO orbits[J]. Advances in Space Research, 59, 181-192(2017).

    [34] Šilha J, Pittet J N, Hamara M et al. Apparent rotation properties of space debris extracted from photometric measurements[J]. Advances in Space Research, 61, 844-861(2018).

    [35] Kirchner G, Koidl F, Ploner M et al. Multistatic laser ranging to space debris[C], 1-9(2013).

    [36] Sciré G, Santoni F, Piergentili F. Analysis of orbit determination for space based optical space surveillance system[J]. Advances in Space Research, 56, 421-428(2015).

    [37] Olmedo E, Sánchez-Ortiz N, Guijarro N et al. Survey-only optical strategies for cataloguing space debris objects in the future European space surveillance system[J]. Advances in Space Research, 48, 535-556(2011).

    [38] Godefroy A B[M]. The Canadian space program: from black brant to the international space station, 11-30(2017).

    [39] Olmos D E, Roda F E A, Middleton K et al. Space-based space surveillance operational and demonstration missions[C], SP-723(2013).

    [40] Hu Y P, Li K B, Liang Y G et al. Review on strategies of space-based optical space situational awareness[J]. Journal of Systems Engineering and Electronics, 32, 1152-1166(2021).

    [41] Cong L T[M]. Development of world’s space based radar(2007).

    [42] Aglietti G S, Taylor B, Fellowes S et al. The active space debris removal mission RemoveDebris. Part 2: in orbit operations[J]. Acta Astronautica, 168, 310-322(2020).

    [43] Anz-Meador P, Ward M, Manis A et al. The space debris sensor experiment[C], JSC-E-DAA-TN74830(2019).

    [44] Bauer W, Romberg O, Wiedemann C et al. Development of in situ space debris detector[J]. Advances in Space Research, 54, 1858-1869(2014).

    [45] Hamilton J, Liou J C, Anz-Meador P D et al. Development of the space debris sensor (SDS)[C], 7, 1-11(2017).

    [46] Corsaro R D, Giovane F, Liou J C et al. Characterization of space dust using acoustic impact detection[J]. The Journal of the Acoustical Society of America, 140, 1429-1438(2016).

    [47] Xie Y H, Ma C, Zhong X et al. Research on space-based space target observation based on “Jilin-1” video satellite[J]. Space Debris Research, 19, 13-20(2019).

    [48] Li D J, Liu B, Yin J F et al. Analysis and design of spaceborne MMW radar for space debris observation system[J]. Journal of Astronautics, 31, 2746-2753(2010).

    [49] Fitzmaurice J, Bédard D, Lee C H et al. Detection and correlation of geosynchronous objects in NASA’s Wide-field Infrared Survey Explorer images[J]. Acta Astronautica, 183, 176-198(2021).

    [50] Silha J, Linder E, Hager M et al. Optical light curve observations to determine attitude states of space debris[C], 1-4(2015).

    [51] Wang Y P, Niu Z D, Wang D Y et al. Simulation algorithm for space-based optical observation images considering influence of stray light[J]. Laser & Optoelectronics Progress, 59, 0229001(2022).

    [52] Do H N, Chin T J, Moretti N et al. Robust foreground segmentation and image registration for optical detection of GEO objects[J]. Advances in Space Research, 64, 733-746(2019).

    [53] Zhu L Y, Liu Y S, He D P et al. An efficient target detection algorithm via Karhunen-Loève transform for frequency modulated continuous wave (FMCW) radar applications[J]. IET Signal Processing, 1-11(2022).

    [54] Vierinen J, Kastinen D, Markkanen J et al. 2018 Beam-park observations of space debris with the EISCAT radars[C], 1-10(2019).

    [55] Li G Q, Liu J, Cheng H W. Space debris laser ranging technology and applications[J]. Space Debris Research, 20, 40-48(2020).

    [56] Smith C H, Greene B. The EOS space debris tracking system[C], 2, 1008(2006).

    [57] Laas-Bourez M, Wailliez S, Deleflie F et al. First astrometric observations of space debris with the MéO telescope[J]. Advances in Space Research, 49, 603-611(2012).

    [58] Zhang H F, Long M L, Deng H R et al. Developments of space debris laser ranging technology including the applications of picosecond lasers[J]. Applied Sciences, 11, 10080(2021).

    [59] Kirchner G, Koidl F. Laser ranging to space debris from Graz laser station[J]. Vermessung and Geoinformation, 66, 151-155(2015).

    [60] Long M L, Zhang H F, Deng H R et al. Laser ranging for space debris using double telescopes with kilometer-level distance[J]. Acta Optica Sinica, 40, 0228002(2020).

    [61] Chen L, Liu C Z, Li Z W et al. Error analysis of space objects common-view observation positioning[J]. Acta Optica Sinica, 42, 0604001(2022).

    [62] Yang X S, Pan X F, Su S J et al. Data-driven awareness technology for space target image information[J]. Acta Optica Sinica, 41, 0315002(2021).