• International Journal of Extreme Manufacturing
  • Vol. 6, Issue 1, 12007 (2024)
Siqi Xie*, Hongxin Zhu, Xing Zhang, and Haidong Wang
Author Affiliations
  • Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, People’s Republic of China
  • show less
    DOI: 10.1088/2631-7990/acfd68 Cite this Article
    Siqi Xie, Hongxin Zhu, Xing Zhang, Haidong Wang. A brief review on the recent development of phonon engineering and manipulation at nanoscales[J]. International Journal of Extreme Manufacturing, 2024, 6(1): 12007 Copy Citation Text show less
    References

    [1] Pokatilov E P, Nika D L and Balandin A A 2005 Acoustic phonon engineering in coated cylindrical nanowires Superlattices Microstruct. 38 168–83

    [2] Mori N and Ando T 1989 Electron-optical-phonon interaction in single and double heterostructures Phys. Rev. B 40 6175–88

    [3] Giustino F 2017 Electron-phonon interactions from first principles Rev. Mod. Phys. 89 015003

    [4] Regner K T, Sellan D P, Su Z H, Amon C H, Mcgaughey A J H and Malen J A 2013 Broadband phonon mean free path contributions to thermal conductivity measured using frequency domain thermoreflectance Nat. Commun. 4 1640

    [5] Chen M Y, Lin X, Dinh T H, Zheng Z R, Shen J L, Ma Q, Chen H S, Jarillo-Herrero P and Dai S Y 2020 Configureurable phonon polaritons in twisted α-MoO3 Nat. Mater. 19 1307–11

    [6] Lindsay L, Broido D A and Reinecke T L 2013 First-principles determination of ultrahigh thermal conductivity of boron arsenide: a competitor for diamond? Phys. Rev. Lett. 111 025901

    [7] Chiritescu C, Cahill D G, Nguyen N, Johnson D, Bodapati A, Keblinski P and Zschack P 2007 Ultralow thermal conductivity in disordered, layered WSe2 crystals Science 315 351–3

    [8] Li N B, Ren J, Wang L, Zhang G, H?nggi P and Li B W 2012 Colloquium: phononics: manipulating heat flow with electronic analogs and beyond Rev. Mod. Phys. 84 1045–66

    [9] Chen X K, Pang M, Chen T, Du D and Chen K Q 2020 Thermal rectification in asymmetric graphene/hexagonal boron nitride van der Waals heterostructures ACS Appl. Mater. Interfaces 12 15517–26

    [10] Li B W, Wang L and Casati G 2006 Negative differential thermal resistance and thermal transistor Appl. Phys. Lett. 88 143501

    [11] Zhong W R, Huang W H, Deng X R and Ai B Q 2011 Thermal rectification in thickness-asymmetric graphene nanoribbons Appl. Phys. Lett. 99 193104

    [12] Wang Y, Chen S Y and Ruan X L 2012 Tunable thermal rectification in graphene nanoribbons through defect engineering: a molecular dynamics study Appl. Phys. Lett. 100 163101

    [13] Yang X M, Yu D P and Cao B Y 2017 Giant thermal rectification from single-carbon nanotube-graphene junction ACS Appl. Mater. Interfaces 9 24078–84

    [14] Zhang Y F, Lv Q, Wang H D, Zhao S Y, Xiong Q H, Lv R T and Zhang X 2022 Simultaneous electrical and thermal rectification in a monolayer lateral heterojunction Science 378 169–75

    [15] Sood A et al 2018 An electrochemical thermal transistor Nat. Commun. 9 4510

    [16] Xie R G, Bui C T, Varghese B, Zhang Q X, Sow C H, Li B W and Thong J T L 2011 An electrically tuned solid-state thermal memory based on metal-insulator transition of single-crystalline VO2 nanobeams Adv. Funct. Mater. 21 1602–7

    [17] Chen Z W, Zhang X Y and Pei Y Z 2018 Manipulation of phonon transport in thermoelectrics Adv. Mater. 30 1705617

    [18] Zheng W W, Luo Y B, Liu Y, Shi J, Xiong R and Wang Z Y 2019 Synergistical tuning interface barrier and phonon propagation in Au-Sb2Te3 nanoplate for boosting thermoelectric performance J. Phys. Chem. Lett. 10 4903–9

    [19] Tang J Y, Wang H T, Lee D H, Fardy M, Huo Z Y, Russell T P and Yang P D 2010 Holey silicon as an efficient thermoelectric material Nano Lett. 10 4279–83

    [20] Schittny R, Kadic M, Guenneau S and Wegener M 2013 Experiments on transformation thermodynamics: molding the flow of heat Phys. Rev. Lett. 110 195901

    [21] Venema L, Verberck B, Georgescu I, Prando G, Couderc E, Milana S, Maragkou M, Persechini L, Pacchioni G and Fleet L 2016 The quasiparticle zoo Nat. Phys. 12 1085–9

    [22] Peierls R 1929 Zur kinetischen theorie der w?rmeleitung in Kristallen Ann. Phys. 395 1055–101

    [23] Callaway J 1959 Model for lattice thermal conductivity at low temperatures Phys. Rev. 113 1046–51

    [24] Holland M G 1963 Analysis of lattice thermal conductivity Phys. Rev. 132 2461–71

    [25] Qian X, Zhou J W and Chen G 2021 Phonon-engineered extreme thermal conductivity materials Nat. Mater. 20 1188–202

    [26] Alder B J and Wainwright T E 1959 Studies in molecular dynamics. I. General method J. Chem. Phys. 31 459–66

    [27] Car R and Parrinello M 1985 Unified approach for molecular dynamics and density-functional theory Phys. Rev. Lett. 55 2471–4

    [28] Hu J N, Ruan X L and Chen Y P 2009 Thermal conductivity and thermal rectification in graphene nanoribbons: a molecular dynamics study Nano Lett. 9 2730–5

    [29] Lindsay L, Broido D A and Reinecke T L 2012 Thermal conductivity and large isotope effect in GaN from first principles Phys. Rev. Lett. 109 095901

    [30] Garg J, Bonini N, Kozinsky B and Marzari N 2011 Role of disorder and anharmonicity in the thermal conductivity of silicon-germanium alloys: a first-principles study Phys. Rev. Lett. 106 045901

    [31] Luo Y X, Yang X L, Feng T L, Wang J Y and Ruan X L 2020 Vibrational hierarchy leads to dual-phonon transport in low thermal conductivity crystals Nat. Commun. 11 2554

    [32] Stewart D A, Savi′c I and Mingo N 2009 First-principles calculation of the isotope effect on boron nitride nanotube thermal conductivity Nano Lett. 9 81–84

    [33] Oh D W, Jain A, Eaton J K, Goodson K E and Lee J S 2008 Thermal conductivity measurement and sedimentation detection of aluminum oxide nanofluids by using the 3ω method Int. J. Heat Fluid Flow 29 1456–61

    [34] Heron J S, Fournier T, Mingo N and Bourgeois O 2009 Mesoscopic size effects on the thermal conductance of silicon nanowire Nano Lett. 9 1861–5

    [35] Fujii M, Zhang X, Xie H Q, Ago H, Takahashi K, Ikuta T, Abe H and Shimizu T 2005 Measuring the thermal conductivity of a single carbon nanotube Phys. Rev. Lett. 95 065502

    [36] Ma W G, Miao T T, Zhang X, Takahashi K, Ikuta T, Zhang B P and Ge Z H 2016 A T-type method for characterization of the thermoelectric performance of an individual free-standing single crystal Bi2S3 nanowire Nanoscale 8 2704–10

    [37] Wang H D, Hu S Q, Takahashi K, Zhang X, Takamatsu H and Chen J 2017 Experimental study of thermal rectification in suspended monolayer graphene Nat. Commun. 8 15843

    [38] Zhao S Y and Wang H D 2020 An integrated H-type method to measure thermoelectric properties of two-dimensional materials ES Energy Environ. 9 59–66

    [39] Chen S S et al 2011 Raman measurements of thermal transport in suspended monolayer graphene of variable sizes in vacuum and gaseous environments ACS Nano 5 321–8

    [40] Xu S, Fan A R, Wang H D, Zhang X and Wang X W 2020 Raman-based nanoscale thermal transport characterization: a critical review Int. J. Heat Mass Transfer 154 119751

    [41] Li Q Y, Zhang X and Hu Y D 2014 Laser flash Raman spectroscopy method for thermophysical characterization of 2D nanomaterials Thermochim. Acta 592 67–72

    [42] Yuan P Y, Wang R D, Tan H, Wang T Y and Wang X W 2017 Energy transport state resolved Raman for probing interface energy transport and hot carrier diffusion in few-layered MoS2 ACS Photonics 4 3115–29

    [43] Fan A R, Hu Y D, Wang H D, Ma W G and Zhang X 2019 Dual-wavelength flash Raman mapping method for measuring thermal diffusivity of suspended 2D nanomaterials Int. J. Heat Mass Transfer 143 118460

    [44] Zhang Z L, Sheng S X, Wang R M and Sun M T 2016 Tip-enhanced Raman spectroscopy Anal. Chem. 88 9328–46

    [45] Verma P 2017 Tip-enhanced Raman spectroscopy: technique and recent advances Chem. Rev. 117 6447–66

    [46] Zobeiri H, Hunter N, Xu S, Xie Y S and Wang X W 2022 Robust and high-sensitivity thermal probing at the nanoscale based on resonance Raman ratio (R3) Int. J. Extrem. Manuf. 4 035201

    [47] Yue Y N, Chen X W and Wang X W 2011 Noncontact sub-10 nm temperature measurement in near-field laser heating ACS Nano 5 4466–75

    [48] Huang D Z, Sun Q S, Liu Z Y, Xu S, Yang R G and Yue Y N 2023 Ballistic thermal transport at sub-10 nm laser-induced hot spots in GaN crystal Adv. Sci. 10 2204777

    [49] Ma W G, Miao T T, Zhang X, Kohno M and Takata Y 2015 Comprehensive study of thermal transport and coherent acoustic-phonon wave propagation in thin metal film-substrate by applying picosecond laser pump-probe method J. Phys. Chem. C 119 5152–9

    [50] Jiang P Q, Qian X and Yang R G 2018 Tutorial: time-domain thermoreflectance (TDTR) for thermal property characterization of bulk and thin film materials J. Appl. Phys. 124 161103

    [51] Qian X, Jiang P Q and Yang R G 2017 Anisotropic thermal conductivity of 4H and 6H silicon carbide measured using time-domain thermoreflectance Mater. Today Phys. 3 70–75

    [52] Eesley G L 1983 Observation of nonequilibrium electron heating in copper Phys. Rev. Lett. 51 2140–3

    [53] Jiang P Q, Qian X and Yang R G 2017 Time-domain thermoreflectance (TDTR) measurements of anisotropic thermal conductivity using a variable spot size approach Rev. Sci. Instrum. 88 074901

    [54] Li M, Kang J S and Hu Y J 2018 Anisotropic thermal conductivity measurement using a new asymmetric-beam time-domain thermoreflectance (AB-TDTR) method Rev. Sci. Instrum. 89 084901

    [55] Huxtable S, Cahill D G, Fauconnier V, White J O and Zhao J C 2004 Thermal conductivity imaging at micrometre-scale resolution for combinatorial studies of materials Nat. Mater. 3 298–301

    [56] Pek E K, Brethauer J and Cahill D G 2020 High spatial resolution thermal conductivity mapping of SiC/SiC composites J. Nucl. Mater. 542 152519

    [57] Wang M K, Ramer G, Perez-Morelo D J, Pavlidis G, Schwartz J J, Yu L Y, Ilic R, Aksyuk V A and Centrone A 2022 High throughput nanoimaging of thermal conductivity and interfacial thermal conductance Nano Lett. 22 4325–32

    [58] Jiang P Q, Huang B and Koh Y K 2016 Accurate measurements of cross-plane thermal conductivity of thin films by dual-frequency time-domain thermoreflectance (TDTR) Rev. Sci. Instrum. 87 075101

    [59] Slack G A 1973 Nonmetallic crystals with high thermal conductivity J. Phys. Chem. Solids 34 321–35

    [60] Ziman J M 2001 Electrons and Phonons: The Theory of Transport Phenomena in Solids (Oxford University Press)

    [61] Shi X, Chen L and Uher C 2016 Recent advances in high-performance bulk thermoelectric materials Int. Mater. Rev. 61 379–415

    [62] Snyder G J, Christensen M, Nishibori E, Caillat T and Iversen B B 2004 Disordered zinc in Zn4Sb3 with phonon-glass and electron-crystal thermoelectric properties Nat. Mater. 3 458–63

    [63] Biswas K, He J Q, Zhang Q C, Wang G Y, Uher C, Dravid V P and Kanatzidis M G 2011 Strained endotaxial nanostructures with high thermoelectric figure of merit Nat. Chem. 3 160–6

    [64] Kargar F, Penilla E H, Aytan E, Lewis J S, Garay J E and Balandin A A 2018 Acoustic phonon spectrum engineering in bulk crystals via incorporation of dopant atoms Appl. Phys. Lett. 112 191902

    [65] Casimir H B G 1938 Note on the conduction of heat in crystals Physica 5 495–500

    [66] Li D Y, Wu Y Y, Kim P, Shi L, Yang P D and Majumdar A 2003 Thermal conductivity of individual silicon nanowires Appl. Phys. Lett. 83 2934–6

    [67] Cheaito R, Duda J C, Beechem T E, Hattar K, Ihlefeld J F, Medlin D L, Rodriguez M A, Campion M J, Piekos E S and Hopkins P E 2012 Experimental investigation of size effects on the thermal conductivity of silicon-germanium alloy thin films Phys. Rev. Lett. 109 195901

    [68] Balandin A and Wang K L 1998 Significant decrease of the lattice thermal conductivity due to phonon confinement in a free-standing semiconductor quantum well Phys. Rev. B 58 1544–9

    [69] Maire J, Anufriev R and Nomura M 2017 Ballistic thermal transport in silicon nanowires Sci. Rep. 7 41794

    [70] Siemens M E, Li Q, Yang R G, Nelson K A, Anderson E H, Murnane M M and Kapteyn H C 2010 Quasi-ballistic thermal transport from nanoscale interfaces observed using ultrafast coherent soft x-ray beams Nat. Mater. 9 26–30

    [71] Anufriev R, Ramiere A, Maire J and Nomura M 2017 Heat guiding and focusing using ballistic phonon transport in phononic nanostructures Nat. Commun. 8 15505

    [72] Anufriev R and Nomura M 2020 Ray phononics: thermal guides, emitters, filters, and shields powered by ballistic phonon transport Mater. Today Phys. 15 100272

    [73] Terraneo M, Peyrard M and Casati G 2002 Controlling the energy flow in nonlinear lattices: a model for a thermal rectifier Phys. Rev. Lett. 88 094302

    [74] Li B W, Wang L and Casati G 2004 Thermal diode: rectification of heat flux Phys. Rev. Lett. 93 184301

    [75] Wang L and Li B W 2007 Thermal logic gates: computation with phonons Phys. Rev. Lett. 99 177208

    [76] Wang L and Li B W 2008 Thermal memory: a storage of phononic information Phys. Rev. Lett. 101 267203

    [77] Starr C 1936 The copper oxide rectifier Physics 7 15–19

    [78] Roberts N A and Walker D G 2011 A review of thermal rectification observations and models in solid materials Int. J. Therm. Sci. 50 648–62

    [79] Rogers G F C 1961 Heat transfer at the interface of dissimilar metals Int. J. Heat Mass Transfer 2 150–4

    [80] Thomas T R and Probert S D 1970 Thermal contact resistance: the directional effect and other problems Int. J. Heat Mass Transfer 13 789–807

    [81] Marucha C, Mucha J and Rafa?owicz J 1975 Heat flow rectification in inhomogeneous GaAs Phys. Status Solidi a 31 269–73

    [82] Je˙zowski A and Rafalowicz J 1978 Heat flow asymmetry on a junction of quartz with graphite Phys. Status Solidi a 47 229–32

    [83] Hoff H 1985 Asymmetrical heat conduction in inhomogeneous materials Physica A 131 449–64

    [84] Lewis D V and Perkins H C 1968 Heat transfer at the interface of stainless steel and aluminum—the influence of surface conditions on the directional effect Int. J. Heat Mass Transfer 11 1371–83

    [85] Jones A, O’Callaghan P W and Probert S D 1971 Differential expansion thermal rectifier J. Phys. E 4 438–40

    [86] Wang Y, Vallabhaneni A, Hu J N, Qiu B, Chen Y P and Ruan X L 2014 Phonon lateral confinement enables thermal rectification in asymmetric single-material nanostructures Nano Lett. 14 592–6

    [87] Zhao S Y, Zhou Y H and Wang H D 2022 Review of thermal rectification experiments and theoretical calculations in 2D materials Int. J. Heat Mass Transfer 195 123218

    [88] Hu J N, Ruan X L and Chen Y P 2012 Molecular dynamics study of thermal rectification in graphene nanoribbons Int. J. Thermophys. 33 986–91

    [89] Zhang G and Zhang H S 2011 Thermal conduction and rectification in few-layer graphene Y junctions Nanoscale 3 4604–7

    [90] Yang X, Zheng X H, Liu Q S, Zhang T, Bai Y, Yang Z, Chen H S and Liu M 2020 Experimental study on thermal conductivity and rectification in suspended monolayer MoS2 ACS Appl. Mater. Interfaces 12 28306–12

    [91] Kasprzak M, Sledzinska M, Zaleski K, Iatsunskyi I, Alzina F, Volz S, Torres C M S and Graczykowski B 2020 High-temperature silicon thermal diode and switch Nano Energy 78 105261

    [92] Chien S K, Yang Y T and Chen C K 2010 Thermal conductivity and thermal rectification in carbon nanotubes with geometric variations of doped nitrogen: non-equilibrium molecular dynamics simulations Phys. Lett. A 374 4885–9

    [93] Yuan K P, Sun M M, Wang Z L and Tang D W 2015 Tunable thermal rectification in silicon-functionalized graphene nanoribbons by molecular dynamics simulation Int. J. Therm. Sci. 98 24–31

    [94] Chen X K, Xie Z X, Zhang Y, Deng Y X, Zou T H, Liu J and Chen K Q 2019 Highly efficient thermal rectification in carbon/boron nitride heteronanotubes Carbon 148 532–9

    [95] Chen X K, Xie Z X, Zhou W X, Tang L M and Chen K Q 2016 Thermal rectification and negative differential thermal resistance behaviors in graphene/hexagonal boron nitride heterojunction Carbon 100 492–500

    [96] Chang C W, Okawa D, Majumdar A and Zettl A 2006 Solid-state thermal rectifier Science 314 1121–4

    [97] Gunawardana K G S H, Mullen K, Hu J N, Chen Y P and Ruan X L 2012 Tunable thermal transport and thermal rectification in strained graphene nanoribbons Phys. Rev. B 85 245417

    [98] Jiang P F, Hu S Q, Ouyang Y L, Ren W J, Yu C Q, Zhang Z W and Chen J 2020 Remarkable thermal rectification in pristine and symmetric monolayer graphene enabled by asymmetric thermal contact J. Appl. Phys. 127 235101

    [99] Zhao H B, Yang X, Wang C Y, Lu R, Zhang T, Chen H S and Zheng X H 2023 Progress in thermal rectification due to heat conduction in micro/nano solids Mater. Today Phys. 30 100941

    [100] Zhang Y Y, Pei Q X, Wang C M, Yang C H and Zhang Y W 2018 Interfacial thermal conductance and thermal rectification of hexagonal BCnN/graphene in-plane heterojunctions J. Phys. Chem. C 122 22783–9

    [101] Zhuang S Y and Liu Y D 2020 Interface-controlled thermal rectification phenomenon of monolayer graphene/boron nitride heterosheet J. Phys. Chem. Lett. 11 9731–7

    [102] Sakai S, Samuelsen M R and Olsen O H 1987 Perturbation analysis of a parametrically changed sine-Gordon equation Phys. Rev. B 36 217–25

    [103] Woafo P 1998 Scattering of the φ4 kink with an interface Phys. Rev. E 58 1033–9

    [104] Anderson P W 1958 Absence of diffusion in certain random lattices Phys. Rev. 109 1492–505

    [105] Luckyanova M N et al 2018 Phonon localization in heat conduction Sci. Adv. 4 eaat9460

    [106] Hu J N, Wang Y, Vallabhaneni A, Ruan X L and Chen Y P 2011 Nonlinear thermal transport and negative differential thermal conductance in graphene nanoribbons Appl. Phys. Lett. 99 113101

    [107] Li F, Li H Y, Wang J, Xia G D and Hwang G 2022 Tunable thermal rectification and negative differential thermal resistance in gas-filled nanostructure with mechanically-controllable nanopillars J. Therm. Sci. 31 1084–93

    [108] Zhong W R, Zheng D Q and Hu B 2012 Thermal control in graphene nanoribbons: thermal valve, thermal switch and thermal amplifier Nanoscale 4 5217–20

    [109] Mazur A K and Maaloum M 2014 DNA flexibility on short length scales probed by atomic force microscopy Phys. Rev. Lett. 112 068104

    [110] Behnia S and Panahinia R 2018 Molecular thermal transistor: dimension analysis and mechanism Chem. Phys. 505 40–46

    [111] Chen F Q, Liu X J, Tian Y P, Wang D Y and Zheng Y 2021 Non-contact thermal transistor effects modulated by nanoscale mechanical deformation J. Quant. Spectrosc. Radiat. Transfer 259 107414

    [112] Saira O P, Meschke M, Giazotto F, Savin A M, M?tt?nen M and Pekola J P 2007 Heat transistor: demonstration of gate-controlled electronic refrigeration Phys. Rev. Lett. 99 027203

    [113] Yi?gen S and Champagne A R 2014 Wiedemann-Franz relation and thermal-transistor effect in suspended graphene Nano Lett. 14 289–93

    [114] Vining C B 2001 Semiconductors are cool Nature 413 577–8

    [115] Xi H X, Luo L G and Fraisse G 2007 Development and applications of solar-based thermoelectric technologies Renew. Sustain. Energy Rev. 11 923–36

    [116] Burnete N V, Mariasiu F, Depcik C, Barabas I and Moldovanu D 2022 Review of thermoelectric generation for internal combustion engine waste heat recovery Prog. Energy Combust. Sci. 91 101009

    [117] Chen W Y, Shi X L, Zou J and Chen Z G 2022 Thermoelectric coolers for on-chip thermal management: materials, design, and optimization Mater. Sci. Eng. R 151 100700

    [118] Ren W et al 2021 High-performance wearable thermoelectric generator with self-healing, recycling, and Lego-like reconfiguring capabilities Sci. Adv. 7 eabe0586

    [119] Shi X L, Zou J and Chen Z G 2020 Advanced thermoelectric design: from materials and structures to devices Chem. Rev. 120 7399–515

    [120] DiSalvo F J 1999 Thermoelectric cooling and power generation Science 285 703–6

    [121] Zheng Y et al 2015 Mechanically robust BiSbTe alloys with superior thermoelectric performance: a case study of stable hierarchical nanostructured thermoelectric materials Adv. Energy Mater. 5 1401391

    [122] Chang Z et al 2022 First-principles investigation of the significant anisotropy and ultrahigh thermoelectric efficiency of a novel two-dimensional Ga2I2S2 at room temperature Int. J. Extrem. Manuf. 4 025001

    [123] Klemens P G 1955 The scattering of low-frequency lattice waves by static imperfections Proc. Phys. Soc. A 68 1113–28

    [124] Pei Y Z, Lensch-Falk J, Toberer E S, Medlin D L and Snyder G J 2011 High thermoelectric performance in PbTe due to large nanoscale Ag2Te precipitates and la doping Adv. Funct. Mater. 21 241–9

    [125] Pei Y Z, Zheng L L, Li W, Lin S Q, Chen Z W, Wang Y Y, Xu X F, Yu H L, Chen Y and Ge B H 2016 Interstitial point defect scattering contributing to high thermoelectric performance in SnTe Adv. Electron. Mater. 2 1600019

    [126] Liu Z H, Mao J, Liu T H, Chen G and Ren Z F 2018 Nano-microstructural control of phonon engineering for thermoelectric energy harvesting MRS Bull. 43 181–6

    [127] Li W, Lin S Q, Zhang X Y, Chen Z W, Xu X F and Pei Y Z 2016 Thermoelectric properties of Cu2SnSe4 with intrinsic vacancy Chem. Mater. 28 6227–32

    [128] Zhang X Y, Li J, Wang X, Chen Z W, Mao J J, Chen Y and Pei Y Z 2018 Vacancy manipulation for thermoelectric enhancements in GeTe alloys J. Am. Chem. Soc. 140 15883–8

    [129] Rowe D M 2006 Thermoelectrics Handbook: Macro to Nano (CRC Press)

    [130] Wu Y X et al 2020 Thermoelectric enhancements in PbTe alloys due to dislocation-induced strains and converged bands Adv. Sci. 7 1902628

    [131] Jiang Y et al 2022 Evolution of defect structures leading to high ZT in GeTe-based thermoelectric materials Nat. Commun. 13 6087

    [132] Xin J Z, Wu H J, Liu X H, Zhu T J, Yu G T and Zhao X B 2017 Mg vacancy and dislocation strains as strong phonon scatterers in Mg2Si1?xSbx thermoelectric materials Nano Energy 34 428–36

    [133] Meng X F, Liu Z H, Cui B, Qin D D, Geng H Y, Cai W, Fu L W, He J Q, Ren Z F and Sui J 2017 Grain boundary engineering for achieving high thermoelectric performance in n-type skutterudites Adv. Energy Mater. 7 1602582

    [134] Xu L Q, Xiao Y, Wang S N, Cui B, Wu D, Ding X D and Zhao L D 2022 Dense dislocations enable high-performance PbSe thermoelectric at low-medium temperatures Nat. Commun. 13 6449

    [135] Fu C G, Wu H J, Liu Y T, He J Q, Zhao X B and Zhu T J 2016 Enhancing the figure of merit of heavy-band thermoelectric materials through hierarchical phonon scattering Adv. Sci. 3 1600035

    [136] Zwicky F 1932 Secondary structure and mosaic structure of crystals Phys. Rev. 40 63–77

    [137] Geis M W, Smith H I, Argoitia A, Angus J, Ma G H M, Glass J T, Butler J, Robinson C J and Pryor R 1991 Large-area mosaic diamond films approaching single-crystal quality Appl. Phys. Lett. 58 2485–7

    [138] He Y, Lu P, Shi X, Xu F F, Zhang T S, Snyder G J, Uher C and Chen L D 2015 Ultrahigh thermoelectric performance in mosaic crystals Adv. Mater. 27 3639–44

    [139] Lu B B, Wang M Y, Yang J, Hou H G, Zhang X Z, Shi Z Q, Liu J L, Qiao G J and Liu G W 2022 Dense twin and domain boundaries lead to high thermoelectric performance in Sn-doped Cu3SbS4 Appl. Phys. Lett. 120 173901

    [140] Ying P J, Li X, Wang Y C, Yang J, Fu C G, Zhang W Q, Zhao X B and Zhu T J 2017 Hierarchical chemical bonds contributing to the intrinsically low thermal conductivity in α-MgAgSb thermoelectric materials Adv. Funct. Mater. 27 1604145

    [141] Hanus R, Agne M T, Rettie A J E, Chen Z W, Tan G J, Chung D Y, Kanatzidis M G, Pei Y Z, Voorhees P W and Snyder G J 2019 Lattice softening significantly reduces thermal conductivity and leads to high thermoelectric efficiency Adv. Mater. 31 1900108

    [142] Liu H L, Shi X, Xu F F, Zhang L L, Zhang W Q, Chen L D, Li Q, Uher C, Day T and Snyder G J 2012 Copper ion liquid-like thermoelectrics Nat. Mater. 11 422–5

    [143] He Y L, Shi X, Xu F F, Zhang L L, Zhang W Q, Chen L D, Li Q, Uher C, Day T and Snyder G J 2014 High thermoelectric performance in non-toxic earth-abundant copper sulfide Adv. Mater. 26 3974–8

    [144] Zhao K P, Qiu P F, Song Q F, Blichfeld A B, Eikeland E, Ren D D, Ge B H, Iversen B B, Shi X and Chen L D 2017 Ultrahigh thermoelectric performance in Cu2?ySe0.5S0.5 liquid-like materials Mater. Today Phys. 1 14–23

    [145] Jakhar N, Bisht N, Katre A and Singh S 2022 Synergistic approach toward a reproducible high zT in n-type and p-type superionic thermoelectric Ag2Te ACS Appl. Mater. Interfaces 14 53916–27

    [146] Lin Y et al 2020 Expression of interfacial Seebeck coefficient through grain boundary engineering with multi-layer graphene nanoplatelets Energy Environ. Sci. 13 4114–21

    [147] Hicks L D and Dresselhaus M S 1993 Thermoelectric figure of merit of a one-dimensional conductor Phys. Rev. B 47 16631–4

    [148] Yang X et al 2022 Progress in measurement of thermoelectric properties of micro/nano thermoelectric materials: a critical review Nano Energy 101 107553

    [149] Harman T C, Taylor P J, Walsh M P and LaForge B E 2002 Quantum dot superlattice thermoelectric materials and devices Science 297 2229–32

    [150] Li W, Zheng L L, Ge B H, Lin S Q, Zhang X Y, Chen Z W, Chang Y J and Pei Y Z 2017 Promoting SnTe as an eco-friendly solution for p-PbTe thermoelectric via band convergence and interstitial defects Adv. Mater. 29 1605887

    [151] Li J, Chen Z W, Zhang X Y, Yu H L, Wu Z H, Xie H Q, Chen Y and Pei Y Z 2017 Simultaneous optimization of carrier concentration and alloy scattering for ultrahigh performance GeTe thermoelectrics Adv. Sci. 4 1700341

    [152] Komatsu N, Ichinose Y, Dewey O S, Taylor L W, Trafford M A, Yomogida Y, Wehmeyer G, Pasquali M, Yanagi K and Kono J 2021 Macroscopic weavable fibers of carbon nanotubes with giant thermoelectric power factor Nat. Commun. 12 4931

    [153] Dresselhaus M S, Chen G, Tang M Y, Yang R G, Lee H, Wang D Z, Ren Z F, Fleurial J P and Gogna P 2007 New directions for low-dimensional thermoelectric materials Adv. Mater. 19 1043–53

    [154] Chang H T, Wang C C, Hsu J C, Hung M T, Li P W and Lee S W 2013 High quality multifold Ge/Si/Ge composite quantum dots for thermoelectric materials Appl. Phys. Lett. 102 101902

    [155] Vaziri S et al 2019 Ultrahigh thermal isolation across heterogeneously layered two-dimensional materials Sci. Adv. 5 eaax1325

    [156] Venkatasubramanian R, Siivola E, Colpitts T and O’Quinn B 2001 Thin-film thermoelectric devices with high room-temperature figures of merit Nature 413 597–602

    [157] Kim W, Zide J, Gossard A, Klenov D, Stemmer S, Shakouri A and Majumdar A 2006 Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors Phys. Rev. Lett. 96 045901

    [158] Perez-Taborda J A, Mu?noz Rojo M, Maiz J, Neophytou N and Martin-Gonzalez M 2016 Ultra-low thermal conductivities in large-area Si-Ge nanomeshes for thermoelectric applications Sci. Rep. 6 32778

    [159] Lee S, Kim K, Kang D H, Meyyappan M and Baek C K 2019 Vertical silicon nanowire thermoelectric modules with enhanced thermoelectric properties Nano Lett. 19 747–55

    [160] Wang Y, Huang H X and Ruan X L 2014 Decomposition of coherent and incoherent phonon conduction in superlattices and random multilayers Phys. Rev. B 90 165406

    [161] Xie G F, Ding D and Zhang G 2018 Phonon coherence and its effect on thermal conductivity of nanostructures Adv. Phys. X 3 1480417

    [162] Lee J, Lee W, Wehmeyer G, Dhuey S, Olynick D L, Cabrini S, Dames C, Urban J J and Yang P D 2017 Investigation of phonon coherence and backscattering using silicon nanomeshes Nat. Commun. 8 14054

    [163] Roy Chowdhury P, Reynolds C, Garrett A, Feng T L, Adiga S P and Ruan X L 2020 Machine learning maximized Anderson localization of phonons in aperiodic superlattices Nano Energy 69 104428

    [164] Venkatasubramanian R 2000 Lattice thermal conductivity reduction and phonon localizationlike behavior in superlattice structures Phys. Rev. B 61 3091–7

    [165] Liu W S, Yan X, Chen G and Ren Z F 2012 Recent advances in thermoelectric nanocomposites Nano Energy 1 42–56

    [166] Li J H, Tan Q, Li J F, Liu D W, Li F, Li Z Y, Zou M M and Wang K 2013 BiSbTe-based nanocomposites with high ZT: the effect of SiC nanodispersion on thermoelectric properties Adv. Funct. Mater. 23 4317–23

    [167] Zhao K P, Duan H Z, Raghavendra N, Qiu P F, Zeng Y, Zhang W Q, Yang J H, Shi X and Chen L D 2017 Solid-state explosive reaction for nanoporous bulk thermoelectric materials Adv. Mater. 29 1701148

    [168] Qiao J X, Zhao Y, Jin Q, Tan J, Kang S Q, Qiu J H and Tai K P 2019 Tailoring nanoporous structures in Bi2Te3 thin films for improved thermoelectric performance ACS Appl. Mater. Interfaces 11 38075–83

    [169] Hochbaum A I, Chen R K, Delgado R D, Liang W J, Garnett E C, Najarian M, Majumdar A and Yang P D 2008 Enhanced thermoelectric performance of rough silicon nanowires Nature 451 163–7

    [170] Zhao M L, Kim D, Lee Y H, Yang H and Cho S 2023 Quantum sensing of thermoelectric power in low-dimensional materials Adv. Mater. 35 2106871

    [171] Fan C Z, Gao Y and Huang J P 2008 Shaped graded materials with an apparent negative thermal conductivity Appl. Phys. Lett. 92 251907

    [172] Guenneau S, Amra C and Veynante D 2012 Transformation thermodynamics: cloaking and concentrating heat flux Opt. Express 20 8207–18

    [173] Han T C, Yuan T, Li B W and Qiu C W 2013 Homogeneous thermal cloak with constant conductivity and tunable heat localization Sci. Rep. 3 1593

    [174] Han T C, Bai X, Gao D L, Thong J T L, Li B W and Qiu C W 2014 Experimental demonstration of a bilayer thermal cloak Phys. Rev. Lett. 112 054302

    [175] Han T C, Bai X, Thong J T L, Li B W and Qiu C W 2014 Full control and manipulation of heat signatures: cloaking, camouflage and thermal metamaterials Adv. Mater. 26 1731–4

    [176] Sha W, Xiao M, Huang M Z and Gao L 2022 Topology-optimized freeform thermal metamaterials for omnidirectionally cloaking sensors Mater. Today Phys. 28 100880

    [177] Ye Z Q and Cao B Y 2016 Nanoscale thermal cloaking in graphene via chemical functionalization Phys. Chem. Chem. Phys. 18 32952–61

    [178] Choe H S et al 2019 Ion write microthermotics: programing thermal metamaterials at the microscale Nano Lett. 19 3830–7

    [179] Liu Y D, Cheng Y H, Hu R and Luo X B 2019 Nanoscale thermal cloaking by in-situ annealing silicon membrane Phys. Lett. A 383 2296–301

    [180] Zhang J, Zhang H C, Zhang D, Sun W B and Li Y Y 2022 Performance investigation of nanoscale thermal cloak by the perforated silicon film Curr. Appl. Phys. 35 38–44

    [181] Little W A 1959 The transport of heat between dissimilar solids at low temperatures Can. J. Phys. 37 334–49

    [182] Swartz E T and Pohl R O 1989 Thermal boundary resistance Rev. Mod. Phys. 61 605–68

    [183] Kirkpatrick T R 1985 Localization of acoustic waves Phys. Rev. B 31 5746–55

    [184] Chen G 2021 Non-Fourier phonon heat conduction at the microscale and nanoscale Nat. Rev. Phys. 3 555–69

    [185] Joshi A A and Majumdar A 1993 Transient ballistic and diffusive phonon heat transport in thin films J. Appl. Phys. 74 31–39

    [186] Hsiao T K, Chang H K, Liou S C, Chu M W, Lee S C and Chang C W 2013 Observation of room-temperature ballistic thermal conduction persisting over 8.3 μm in SiGe nanowires Nat. Nanotechnol. 8 534–8

    [187] Wehmeyer G, Yabuki T, Monachon C, Wu J Q and Dames C 2017 Thermal diodes, regulators, and switches: physical mechanisms and potential applications Appl. Phys. Rev. 4 041304

    [188] Yamawaki M, Ohnishi M, Ju S H and Shiomi J 2018 Multifunctional structural design of graphene thermoelectrics by Bayesian optimization Sci. Adv. 4 eaar4192

    [189] Li M, Dai L Y and Hu Y J 2022 Machine learning for harnessing thermal energy: from materials discovery to system optimization ACS Energy Lett. 7 3204–26

    [190] Hu R, Iwamoto S, Feng L, Ju S H, Hu S Q, Ohnishi M, Nagai N, Hirakawa K and Shiomi J 2020 Machinelearning- optimized aperiodic superlattice minimizes coherent phonon heat conduction Phys. Rev. X 10 021050

    [191] Lin S C, Liu Y X, Cai Z L and Zhao C Y 2023 High-throughput screening of aperiodic superlattices based on atomistic simulation-informed effective medium theory and genetic algorithm Int. J. Heat Mass Transfer 202 123694

    [192] Wang T, Zhang C, Snoussi H and Zhang G 2020 Machine learning approaches for thermoelectric materials research Adv. Funct. Mater. 30 1906041

    [193] Hou Z F, Takagiwa Y, Shinohara Y, Xu Y B and Tsuda K 2019 Machine-learning-assisted development and theoretical consideration for the Al2Fe3Si3 thermoelectric material ACS Appl. Mater. Interfaces 11 11545–54

    [194] Ji Q X, Qi Y C, Liu C W, Meng S H, Liang J, Kadic M and Fang G D 2022 Design of thermal cloaks with isotropic materials based on machine learning Int. J. Heat Mass Transfer 189 122716

    [195] Ji Q X, Chen X Y, Liang J, Fang G D, Laude V, Arepolage T, Euphrasie S, Iglesias Martínez J A, Guenneau S and Kadic M 2022 Deep learning based design of thermal metadevices Int. J. Heat Mass Transfer 196 123149

    [196] Lu Q Y, Huberman S, Zhang H T, Song Q C, Wang J Y, Vardar G, Hunt A, Waluyo I, Chen G and Yildiz B 2020 Bi-directional tuning of thermal transport in SrCoOx with electrochemically induced phase transitions Nat. Mater. 19 655–62

    [197] Zhang L F, Wang J S and Li B W 2010 Ballistic thermal rectification in nanoscale three-terminal junctions Phys. Rev. B 81 100301

    [198] Maldovan M and Thomas E L 2006 Simultaneous localization of photons and phonons in two-dimensional periodic structures Appl. Phys. Lett. 88 251907

    Siqi Xie, Hongxin Zhu, Xing Zhang, Haidong Wang. A brief review on the recent development of phonon engineering and manipulation at nanoscales[J]. International Journal of Extreme Manufacturing, 2024, 6(1): 12007
    Download Citation