[1] Wang P, Liu R, Xin X J et al. Scene classification of optical remote sensing images based on residual networks[J]. Laser & Optoelectronics Progress, 58, 0210001(2021).
[2] Shang H Z, Hu S L T, Li M et al. Remote sensing of cloud properties based on visible-to-infrared channel observation from passive remote sensing satellites[J]. Acta Optica Sinica, 42, 0600003(2022).
[3] Wang Y N, Wang X L. Remote sensing image target detection model based on attention and feature fusion[J]. Laser & Optoelectronics Progress, 58, 0228003(2021).
[4] Ren S Q, He K M, Girshick R et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 1137-1149(2017).
[5] He K M, Gkioxari G, Dollár P et al. Mask R-CNN[C], 2980-2988(2017).
[6] Lin T Y, Goyal P, Girshick R et al. Focal loss for dense object detection[C], 2999-3007(2017).
[7] Liu W, Anguelov D, Erhan D et al. SSD: single shot MultiBox detector[M]. Leibe B, Matas J, Sebe N, et al. Computer vision-ECCV 2016, 9905, 21-37(2016).
[8] Redmon J, Divvala S, Girshick R et al. You only look once: unified, real-time object detection[C], 779-788(2016).
[9] Redmon J, Farhadi A. YOLO9000: better, faster, stronger[C], 6517-6525(2017).
[10] Redmon J, Farhadi A. YOLOv3: an incremental improvement[EB/OL]. https://arxiv.org/abs/1804.02767
[11] Bochkovskiy A, Wang C Y, Liao H Y M. YOLOv4: optimal speed and accuracy of object detection[EB/OL]. https://arxiv.org/abs/2004.10934
[12] Tian Z, Shen C H, Chen H et al. FCOS: fully convolutional one-stage object detection[C], 9626-9635(2019).
[13] Zhou X Y, Wang D Q, Krähenbühl P. Objects as points[EB/OL]. https://arxiv.org/abs/1904.07850
[14] Chen B, Cao J W, Parra A et al. Satellite pose estimation with deep landmark regression and nonlinear pose refinement[C], 2816-2824(2019).
[15] Wang J D, Sun K, Cheng T H et al. Deep high-resolution representation learning for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43, 3349-3364(2021).
[16] Hu Y L, Speierer S, Jakob W et al. Wide-depth-range 6D object pose estimation in space[C], 15865-15874(2021).
[17] He K M, Zhang X Y, Ren S Q et al. Identity mappings in deep residual networks[M]. Leibe B, Matas J, Sebe N, et al. Computer vision-ECCV 2016, 9908, 630-645(2016).
[18] Lin T Y, Dollár P, Girshick R et al. Feature pyramid networks for object detection[C], 936-944(2017).
[19] Woo S, Park J, Lee J Y et al. CBAM: convolutional block attention module[M]. Ferrari V, Hebert M, Sminchisescu C, et al. Computer Vision-ECCV 2018, 11211, 3-19(2018).
[20] Wang F, Jiang M Q, Qian C et al. Residual attention network for image classification[C], 6450-6458(2017).
[21] Nair V, Hinton G E. Rectified linear units improve restricted Boltzmann machines[C](2010).
[22] Chen Y P, Dai X Y, Liu M C et al. Dynamic ReLU[M]. Vedaldi A, Bischof H, Brox T, et al. Computer Vision-ECCV 2020, 12364, 351-367(2020).
[23] Musallam M A, Ismaeil K A, Oyedotun O et al. SPARK: SPAcecraft recognition leveraging knowledge of space environment[EB/OL]. https://arxiv.org/abs/2104.05978
[24] Musallam M A, Gaudilliere V, Ghorbel E et al. Spacecraft recognition leveraging knowledge of space environment: simulator, dataset, competition design and analysis[C], 11-15(2021).
[25] Padilla R, Netto S L, da Silva E A B. A survey on performance metrics for object-detection algorithms[C], 237-242(2020).
[26] Lin T Y, Maire M, Belongie S et al. Microsoft COCO: common objects in context[M]. Fleet D, Pajdla T, Schiele B, et al. Computer Vision-ECCV 2014, 8963, 740-755(2014).
[27] Deng J, Dong W, Socher R et al. ImageNet: a large-scale hierarchical image database[C], 248-255(2009).
[28] Ge Z, Liu S T, Wang F et al. YOLOX: exceeding YOLO series in 2021[EB/OL]. https://arxiv.org/abs/2107.08430