[1] WANG X, MAEDA K, THOMAS A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible?light[J]. Nat Mater, 2009, 8(1): 76-80.
[2] GENG A, ZHANG Y, XU X, et al. Photocatalytic degradation of organic dyes on Li-doped graphitic carbon nitrides[J]. J Mater Sci Mater Electron, 2020, 31(5): 3869-3875.
[3] CHEN L, ZHU D, LI J, et al. Sulfur and potassium co-doped graphitic carbon nitride for highly enhanced photocatalytic hydrogen evolution[J]. Appl Catal B, 2020, 273: 119050.
[4] ZHAO D, DONG C L, WANG B, et al. Synergy of dopants and defects in graphitic carbon nitride with exceptionally modulated band structures for efficient photocatalytic oxygen evolution[J]. Adv Mater, 2019, 31(43): 1903545.
[5] LIN W, LU K, ZHOU S, et al. Defects remodeling of g-C3N4 nanosheets by fluorine-containing solvothermal treatment to enhance their photocatalytic activities[J]. Appl Surf Sci, 2019, 474: 194-202.
[6] GENG Y, CHEN D, LI N, et al. Z-scheme 2D/2D α-Fe2O3/g-C3N4 heterojunction for photocatalytic oxidation of nitric oxide[J]. Appl Catal B, 2021, 280: 119409.
[7] HUANG H, LIU C, OU H, et al. Self-sacrifice transformation for fabrication of type-I and type-II heterojunctions in hierarchical BixOyIz/g-C3N4 for efficient visible-light photocatalysis[J]. Appl Surf Sci, 2019, 470: 1101-1110.
[8] WU M, ZHANG J, HE B-B, et al. In-situ construction of coral-like porous P-doped g-C3N4 tubes with hybrid 1D/2D architecture and high efficient photocatalytic hydrogen evolution[J]. Appl Catal B, 2019, 241: 159-166.
[9] GENG A, LIN H, ZHAO Y, et al. Self-assembly of hollow, pompon-like and nanosheet-structured carbon nitride for photodegradation of tetracycline hydrochloride[J]. Part Part Syst Charact, 2022, 39(1): 2100235.
[10] NIU P, ZHANG L, LIU G, et al. Graphene-like carbon nitride nanosheets for improved photocatalytic activities[J]. Adv Funct Mater, 2012, 22(22): 4763-4770.
[11] MOHAMED N A, SAFAEI J, ISMAIL A F, et al. Fabrication of exfoliated graphitic carbon nitride, (g-C3N4) thin film by methanolic dispersion[J]. J Alloys Compd, 2020, 818: 152916.
[12] XU J, ZHANG L, SHI R. Chemical exfoliation of graphitic carbon nitride for efficient heterogeneous photocatalysis[J]. J Mater Chem A, 2013, 1: 14766-14772.
[13] YANG S, GONG Y, ZHANG J, et al. Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light[J]. Adv Mater, 2013, 25(17): 2452-2456.
[16] YANG Qiushi, HU Shaonian, YAO Yaxuan, et al. Chin J Catal, 2021, 42(1): 217-224.
[17] MA T, SHEN Q, XUE B Z J, et al. Facile synthesis of Fe-doped g-C3N4 for enhanced visible-light photocatalytic activity[J]. Inorg Chem Commun, 2019, 107: 107451.
[18] ZHU J, XIAO P, LI H, et al. Graphitic carbon nitride: Synthesis, properties, and applications in catalysis[J]. ACS Appl Mater Interfaces, 2014, 6 19: 16449-16465.
[19] XIAO Y, GENG A, ZHU J, et al. Metal doped graphitic carbon nitride prepared by a bubbling template method for photo-degradation of organic pollutants[J]. J Phys D: Appl Phys, 2022, 55(43): 434002.
[20] YANG B, ZHAO J, YANG W, et al. A step-by-step synergistic stripping approach toward ultra-thin porous g-C3N4 nanosheets with high conduction band position for photocatalystic CO2 reduction[J]. Adv Colloid Interface Sci, 2021, 589: 179-186.
[21] KADAM A N, KIM H, LEE S-W. Low-temperature in situ fabrication of porous S-doped g-C3N4 nanosheets using gaseous-bubble template for enhanced visible-light photocatalysis[J]. Ceram Intl, 2020, 46(18, Part A): 28481-28489.
[22] XU J, WANG Y, ZHU Y. Nanoporous Graphitic Carbon Nitride with Enhanced Photocatalytic Performance[J]. Langmuir, 2013, 29(33): 10566-10572.
[24] LI G, XIE Z, CHAI S, et al. A facile one-step fabrication of holey carbon nitride nanosheets for visible-light-driven hydrogen evolution[J]. Appl Catal B, 2021, 283: 119637.
[25] ZHAO C, SHI C, LI Q, et al. Nitrogen vacancy-rich porous carbon nitride nanosheets for efficient photocatalytic H2O2 production[J]. Mater Today Energy, 2022, 24: 100926.
[26] XU X, LIN H, XIAO P, et al. Construction of ag-bridged z-scheme LaFe0.5Co0.5O3/Ag10/Graphitic carbon nitride heterojunctions for photo-fenton degradation of tetracycline hydrochloride: Interfacial electron effect and reaction mechanism[J]. Adv Mater Interfaces, 2022, 9(5): 2101902.
[27] DONG F, LI Y, WANG Z, et al. Enhanced visible light photocatalytic activity and oxidation ability of porous graphene-like g-C3N4 nanosheets via thermal exfoliation[J]. Appl Surf Sci, 2015, 358: 393-403.
[28] LIU J, WEI Z, FANG W, et al. Enhanced photocatalytic hydrogen evolution of the hydrogenated deficient g-C3N4 via surface hydrotreating[J]. Chem Cat Chem, 2019, 11(24): 6275-6281.
[29] BAO J, BAI W, WU M, et al. Template-mediated copper doped porous g-C3N4 for efficient photodegradation of antibiotic contaminants[J]. Chemosphere, 2022, 293: 133607.
[31] FAISAL M, JALALAH M, HARRAZ F, et al. Au nanoparticles-doped g-C3N4 nanocomposites for enhanced photocatalytic performance under visible light illumination[J]. Ceram Intl, 2020, 46(14): 22090-22101.