• International Journal of Extreme Manufacturing
  • Vol. 5, Issue 3, 32002 (2023)
Guorui Wang1, Hongyu Hou2, Yunfeng Yan2, Ritesh Jagatramka3..., Amir Shirsalimian3, Yafei Wang1, Binzhao Li1, Matthew Daly3 and and Changhong Cao2|Show fewer author(s)
Author Affiliations
  • 1CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, People’s Republic of China
  • 2Department of Mechanical Engineering, McGill University, Montreal H3A 0C3, Canada
  • 3Department of Civil, Materials and Environmental Engineering, University of Illinois, Chicago, IL 60607, United States of America
  • show less
    DOI: 10.1088/2631-7990/accda2 Cite this Article
    Guorui Wang, Hongyu Hou, Yunfeng Yan, Ritesh Jagatramka, Amir Shirsalimian, Yafei Wang, Binzhao Li, Matthew Daly, and Changhong Cao. Recent advances in the mechanics of 2D materials[J]. International Journal of Extreme Manufacturing, 2023, 5(3): 32002 Copy Citation Text show less
    References

    [1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Electric field effect in atomically thin carbon films Science 306 666–9

    [2] Xia F N, Farmer D B, Lin Y-M and Avouris P 2010 Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature Nano Lett. 10 715–8

    [3] Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Single-layer MoS2 transistors Nat. Nanotechnol. 6 147–50

    [4] Zhu H Y, Wang Y, Xiao J, Liu M, Xiong S M, Wong Z J, Ye Z L, Ye Y, Yin X B and Zhang X 2015 Observation of piezoelectricity in free-standing monolayer MoS2 Nat. Nanotechnol. 10 151–5

    [5] Wei X D, Mao L, Soler-Crespo R A, Paci J T, Huang J X, Nguyen S T and Espinosa H D 2015 Plasticity and ductility in graphene oxide through a mechanochemically induced damage tolerance mechanism Nat. Commun. 6 8029

    [6] Soler-Crespo R A, Gao W, Xiao P H, Wei X D, Paci J T, Henkelman G and Espinosa H D 2016 Engineering the mechanical properties of monolayer graphene oxide at the atomic level J. Phys. Chem. Lett. 7 2702–7

    [7] Cao C H, Daly M, Singh C V, Sun Y and Filleter T 2015 High strength measurement of monolayer graphene oxide Carbon 81 497–504

    [8] Cao C H, Daly M, Chen B, Howe J Y, Singh C V, Filleter T and Sun Y 2015 Strengthening in graphene oxide nanosheets: bridging the gap between interplanar and intraplanar fracture Nano Lett. 15 6528–34

    [9] Dikin D A, Stankovich S, Zimney E J, Piner R D, Dommett G H B, Evmenenko G, Nguyen S T and Ruoff R S 2007 Preparation and characterization of graphene oxide paper Nature 448 457–60

    [10] Gao Y, Liu L-Q, Zu S-Z, Peng K, Zhou D, Han B-H and Zhang Z 2011 The effect of interlayer adhesion on the mechanical behaviors of macroscopic graphene oxide papers ACS Nano 5 2134–41

    [11] Hacopian E F, Yang Y C, Ni B, Li Y L, Li X, Chen Q, Guo H, Tour J M, Gao H J and Lou J 2018 Toughening graphene by integrating carbon nanotubes ACS Nano 12 7901–10

    [12] DaiZH,WangGR,LiuLQ,HouY, WeiYGandZhangZ 2016 Mechanical behavior and properties of hydrogen bonded graphene/polymer nano-interfaces Compos. Sci. Technol. 136 1–9

    [13] Young R J, Kinloch I A, Gong L and Novoselov K S 2012 The mechanics of graphene nanocomposites: a review Compos. Sci. Technol. 72 1459–76

    [14] Chen K et al 2022 Graphene oxide bulk material reinforced by heterophase platelets with multiscale interface crosslinking Nat. Mater. 21 1121–9

    [15] Beese A M, An Z, Sarkar S, Nathamgari S S P, Espinosa H D and Nguyen S T 2014 Defect-tolerant nanocomposites through bio-inspired stiffness modulation Adv. Funct. Mater. 24 2883–91

    [16] Soler-Crespo R A, Mao L, Wen J G, Nguyen H T, Zhang X, Wei X D, Huang J X, Nguyen S T and Espinosa H D 2019 Atomically thin polymer layer enhances toughness of graphene oxide monolayers Matter 1 369–88

    [17] Wan S J, Li X, Wang Y L, Chen Y, Xie X, Yang R, Tomsia A P, Jiang L and Cheng Q F 2020 Strong sequentially bridged MXene sheets Proc. Natl Acad. Sci. USA 117 27154–61

    [18] Carey M and Barsoum M W 2021 MXene polymer nanocomposites: a review Mater. Today Adv. 9 100120

    [19] Lee C, Wei X D, Kysar J W and Hone J 2008 Measurement of the elastic properties and intrinsic strength of monolayer graphene Science 321 385–8

    [20] Lee G-H et al 2013 High-strength chemical-vapor-deposited graphene and grain boundaries Science 340 1074–6

    [21] Ruiz L, Xia W J, Meng Z X and Keten S 2015 A coarse-grained model for the mechanical behavior of multi-layer graphene Carbon 82 103–15

    [22] Meng Z X, Soler-Crespo R A, Xia W J, Gao W, Ruiz L, Espinosa H D and Keten S 2017 A coarse-grained model for the mechanical behavior of graphene oxide Carbon 117 476–87

    [23] Mortazavi B, Novikov I S, Podryabinkin E V, Roche S, Rabczuk T, Shapeev A V and Zhuang X Y 2020 Exploring phononic properties of two-dimensional materials using machine learning interatomic potentials Appl. Mater. Today 20 100685

    [24] Mortazavi B, Podryabinkin E V, Novikov I S, Roche S, Rabczuk T, Zhuang X Y and Shapeev A V 2020 Efficient machine-learning based interatomic potentials for exploring thermal conductivity in two-dimensional materials J. Phys. Mater. 3 02LT02

    [25] Mortazavi B, Rajabpour A, Zhuang X Y, Rabczuk T and Shapeev A V 2022 Exploring thermal expansion of carbon-based nanosheets by machine-learning interatomic potentials Carbon 186 501–8

    [26] Mortazavi B, Silani M, Podryabinkin E V, Rabczuk T, Zhuang X Y and Shapeev A V 2021 First-principles multiscale modeling of mechanical properties in graphene/borophene heterostructures empowered by machine-learning interatomic potentials Adv. Mater. 33 2102807

    [27] Daly M, Cao C H, Sun H, Sun Y, Filleter T and Singh C V 2016 Interfacial shear strength of multilayer graphene oxide films ACS Nano 10 1939–47

    [28] Cao G X and Gao H J 2019 Mechanical properties characterization of two-dimensional materials via nanoindentation experiments Prog. Mater. Sci. 103 558–95

    [29] Falin A et al 2017 Mechanical properties of atomically thin boron nitride and the role of interlayer interactions Nat. Commun. 8 15815

    [30] KimSM et al 2015 Synthesis of large-area multilayer hexagonal boron nitride for high material performance Nat. Commun. 6 8662

    [31] Wei X D and Kysar J W 2012 Experimental validation of multiscale modeling of indentation of suspended circular graphene membranes Int. J. Solids Struct. 49 3201–9

    [32] Wei X D, Fragneaud B, Marianetti C A and Kysar J W 2009 Nonlinear elastic behavior of graphene: ab initio calculations to continuum description Phys. Rev. B 80 205407

    [33] Cadelano E, Palla P L, Giordano S and Colombo L 2009 Nonlinear elasticity of monolayer graphene Phys. Rev. Lett. 102 235502

    [34] HanY, ZhouJZ,WangHY, GaoLB,FengSZ,CaoK, Xu Z P and Lu Y 2021 Experimental nanomechanics of 2D materials for strain engineering Appl. Nanosci. 11 1075–91

    [35] HanY, FengSZ,CaoK,WangYJ,GaoLB,XuZPand Lu Y 2020 Large elastic deformation and defect tolerance of hexagonal boron nitride monolayers Cell Rep. Phys. Sci. 1 100172

    [36] Yang Y C et al 2017 Brittle fracture of 2D MoSe2 Adv. Mater. 29 1604201

    [37] Jiang C Y, Markutsya S, Pikus Y and Tsukruk V V 2004 Freely suspended nanocomposite membranes as highly sensitive sensors Nat. Mat. 3 721–8

    [38] Wei X D, Lee D, Shim S, Chen X and Kysar J W 2007 Plane-strain bulge test for nanocrystalline copper thin films Scr. Mater. 57 541–4

    [39] O’Connell P A and McKenna G B 2005 Rheological measurements of the thermoviscoelastic response of ultrathin polymer films Science 307 1760–3

    [40] Koenig S P, Boddeti N G, Dunn M L and Bunch J S 2011 Ultrastrong adhesion of graphene membranes Nat. Nanotechnol. 6 543–6

    [41] Boddeti N G, Liu X H, Long R, Xiao J L, Bunch J S and Dunn M L 2013 Graphene blisters with switchable shapes controlled by pressure and adhesion Nano Lett. 13 6216–21

    [42] Lloyd D, Liu X H, Boddeti N, Cantley L, Long R, Dunn M L and Bunch J S 2017 Adhesion, stiffness, and instability in atomically thin MoS2 bubbles Nano Lett. 17 5329–34

    [43] Wang L D, Travis J J, Cavanagh A S, Liu X H, Koenig S P, Huang P Y, George S M and Bunch J S 2012 Ultrathin oxide films by atomic layer deposition on graphene Nano Lett. 12 3706–10

    [44] KittAL,QiZA,RémiS,ParkHS,Swan AKand Goldberg B B 2013 How graphene slides: measurement and theory of strain-dependent frictional forces between graphene and SiO2 Nano Lett. 13 2605–10

    [45] WangGR,DaiZH,WangYL,Tan PH,LiuLQ,Xu ZP, Wei Y G, Huang R and Zhang Z 2017 Measuring interlayer shear stress in bilayer graphene Phys. Rev. Lett. 119 036101

    [46] WangGR,DaiZH,XiaoJK,FengSZ,WengCX,LiuLQ, Xu Z P, Huang R and Zhang Z 2019 Bending of multilayer van der Waals materials Phys. Rev. Lett. 123 116101

    [47] Stafford C M, Harrison C, Beers K L, Karim A, Amis E J, Vanlandingham M R, Kim H-C, Volksen W, Miller R D and Simonyi E E 2004 A buckling-based metrology for measuring the elastic moduli of polymeric thin films Nat. Mater. 3 545–50

    [48] Stafford C M, Vogt B D, Harrison C, Julthongpiput D and Huang R 2006 Elastic moduli of ultrathin amorphous polymer films Macromolecules 39 5095–9

    [49] Igui.niz N, Frisenda R, Bratschitsch R and Castellanos-Gomez A 2019 Revisiting the buckling metrology method to determine the Young’s modulus of 2D materials Adv. Mater. 31 1807150

    [50] Kim J H, Hyun C, Kim H, Dash J K, Ihm K and Lee G-H 2019 Thickness-insensitive properties of α-MoO3 nanosheets by weak interlayer coupling Nano Lett. 19 8868–76

    [51] Siskins M, Lee M, Alijani F, van Blankenstein M R, Davidovikj D, van der Zant H S J and Steeneken P G 2019 Highly anisotropic mechanical and optical properties of 2D layered As2S3 membranes ACS Nano 13 10845–51

    [52] Liu B H, Pavlou C, Wang Z Y, Cang Y, Galiotis C and Fytas G 2021 Determination of the elastic moduli of CVD graphene by probing graphene/polymer Bragg stacks 2D Mater. 8 035040

    [53] Jiménez-Riobóo R J, Art′us L, Cuscó R, Taniguchi T, Cassabois G and Gil B 2018 In-and out-of-plane longitudinal acoustic-wave velocities and elastic moduli in h-BN from Brillouin scattering measurements Appl. Phys. Lett. 112 051905

    [54] Graczykowski B, Sledzinska M, Placidi M, Saleta Reig D, Kasprzak M, Alzina F and Sotomayor Torres C M 2017 Elastic properties of few nanometers thick polycrystalline MoS2 membranes: a nondestructive study Nano Lett. 17 7647–51

    [55] Babacic V, Reig D S, Varghese S, Vasileiadis T, Coy E, Tielrooij K-J and Graczykowski B 2021 Thickness-dependent elastic softening of few-layer free-standing MoSe2 Adv. Mater. 33 2008614

    [56] Khestanova E, Guinea F, Fumagalli L, Geim A K and Grigorieva I V 2016 Universal shape and pressure inside bubbles appearing in van der Waals heterostructures Nat. Commun. 7 12587

    [57] Di Giorgio C, Blundo E, Pettinari G, Felici M, Lu Y R, Cucolo A M, Polimeni A and Bobba F 2020 Nanoscale measurements of elastic properties and hydrostatic pressure in H2-bulged MoS2 membranes Adv. Mater. Interfaces 7 2001024

    [58] An H J, Tan B H and Ohl C-D 2016 Distinguishing nanobubbles from nanodroplets with AFM: the influence of vertical and lateral imaging forces Langmuir 32 12710–5

    [59] Tan BH,ZhangJ,JinJ,OoiCH,HeY, ZhouRW, Ostrikov K, Nguyen N-T and An H J 2020 Direct measurement of the contents, thickness, and internal pressure of molybdenum disulfide nanoblisters Nano Lett. 20 3478–84

    [60] Zheng Z-Y et al 2020 Local probe of the interlayer coupling strength of few-layers SnSe by contact-resonance atomic force microscopy Front. Phys. 15 63505

    [61] Gisbert V G and Garcia R 2021 Accurate wide-modulus-range nanomechanical mapping of ultrathin interfaces with bimodal atomic force microscopy ACS Nano 15 20574–81

    [62] Di Giorgio C, Blundo E, Pettinari G, Felici M, Bobba F and Polimeni A 2022 Mechanical, elastic, and adhesive properties of two-dimensional materials: from straining techniques to state-of-the-art local probe measurements Adv. Mater. Interfaces 9 2102220

    [63] Won K, Lee C, Jung J, Kwon S, Gebredingle Y, Lim J G, Kim M K, Jeong M S and Lee C 2022 Raman scattering measurement of suspended graphene under extreme strain induced by nanoindentation Adv. Mater. 34 2200946

    [64] Li P F, Kang Z, Zhang Z, Liao Q L, Rao F, Lu Y and Zhang Y 2021 In situ microscopy techniques for characterizing the mechanical properties and deformation behavior of two-dimensional (2D) materials Mater. Today 51 247–72

    [65] Wang R, Wang S F, Wu X Z and Liang X 2010 First-principles calculations on third-order elastic constants and internal relaxation for monolayer graphene Phys. Rev. B 405 3501–6

    [66] Marianetti C A and Yevick H G 2010 Failure mechanisms of graphene under tension Phys. Rev. Lett. 105 245502

    [67] Jiang J-W, Wang J-S and Li B W 2009 Young’s modulus of graphene: a molecular dynamics study Phys. Rev. B 80 113405

    [68] Lu Q, Gao W and Huang R 2011 Atomistic simulation and continuum modeling of graphene nanoribbons under uniaxial tension Model. Simul. Mater. Sci. Eng. 19 054006

    [69] Zhao H, Min K and Aluru N R 2009 Size and chirality dependent elastic properties of graphene nanoribbons under uniaxial tension Nano Lett. 9 3012–5

    [70] Stuart S J, Tutein A B and Harrison J A 2000 A reactive potential for hydrocarbons with intermolecular interactions J. Chem. Phys. 112 6472–86

    [71] Brenner D W, Shenderova O A, Harrison J A, Stuart S J, Ni B and Sinnott S B 2002 A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons J. Phys.: Condens. Matter 14 783–802

    [72] Peng Q and De S 2013 Mechanical properties and instabilities of ordered graphene oxide C6O monolayers RSC Adv. 3 24337–44

    [73] Liu L Z, Zhang J F, Zhao J J and Liu F 2012 Mechanical properties of graphene oxides Nanoscale 4 5910–6

    [74] Sun H, Mukherjee S, Daly M, Krishnan A, Karigerasi M H and Singh C V 2016 New insights into the structure-nonlinear mechanical property relations for graphene allotropes Carbon 110 443–57

    [75] Peng Q, Ji W and De S 2012 Mechanical properties of graphyne monolayers: a first-principles study Phys. Chem. Chem. Phys. 14 13385–91

    [76] Puigdollers A R, Alonso G and Gamallo P 2016 First-principles study of structural, elastic and electronic properties of α-, β-and γ-graphyne Carbon 96 879–87

    [77] Soni H R and Jha P K 2014 Vibrational and elastic properties of 2D carbon allotropes: a first principles study Solid State Commun. 189 58–62

    [78] Peng Q, Ji W and De S 2012 Mechanical properties of the hexagonal boron nitride monolayer: ab initio study Comput. Mater. Sci. 56 11–17

    [79] Mahdizadeh S J, Goharshadi E K and Akhlamadi G 2016 Thermo-mechanical properties of boron nitride nanoribbons: a molecular dynamics simulation study J. Mol. Graph. Model. 68 1–13

    [80] Roman R E and Cranford S W 2014 Mechanical properties of silicene Comput. Mater. Sci. 82 50–55

    [81] Wei Q and Peng X H 2014 Superior mechanical flexibility of phosphorene and few-layer black phosphorus Appl. Phys. Lett. 104 251915

    [82] Cooper R C, Lee C, Marianetti C A, Wei X D, Hone J and Kysar J W 2013 Nonlinear elastic behavior of two-dimensional molybdenum disulfide Phys. Rev. B 87 035423

    [83] Peng Q and De S 2013 Outstanding mechanical properties of monolayer MoS2 and its application in elastic energy storage Phys. Chem. Chem. Phys. 15 19427–37

    [84] Ding W Y, Han D, Zhang J C and Wang X Y 2019 Mechanical responses of WSe2 monolayers: a molecular dynamics study Mater. Res. Express 6 085071

    [85] Borysiuk V N, Mochalin V N and Gogotsi Y 2015 Molecular dynamic study of the mechanical properties of two-dimensional titanium carbides Tin+1Cn(MXenes) Nanotechnology 26 265705

    [86] Hatam-Lee S M, Esfandiar A and Rajabpour A 2021 Mechanical behaviors of titanium nitride and carbide MXenes: a molecular dynamics study Appl. Surf. Sci. 566 150633

    [87] Jhon Y I, Byun Y T, Lee J H and Jhon Y M 2020 Robust mechanical tunability of 2D transition metal carbides via surface termination engineering: molecular dynamics simulation Appl. Surf. Sci. 532 147380

    [88] Jiang J-W and Park H S 2014 Mechanical properties of MoS2/graphene heterostructures Appl. Phys. Lett. 105 033108

    [89] Qin H S, Pei Q-X, Liu Y L and Zhang Y-W 2019 The mechanical and thermal properties of MoS2-WSe2 lateral heterostructures Phys. Chem. Chem. Phys. 21 15845–53

    [90] CaoCH et al 2017 Role of graphene in enhancing the mechanical properties of TiO2/graphene heterostructures Nanoscale 9 11678–84

    [91] Lu Q, Arroyo M and Huang R 2009 Elastic bending modulus of monolayer graphene J. Phys. D: Appl. Phys. 42 102002

    [92] Borysiuk V N, Mochalin V N and Gogotsi Y 2018 Bending rigidity of two-dimensional titanium carbide (MXene) nanoribbons: a molecular dynamics study Comput. Mater. Sci. 143 418–24

    [93] Guo Y F, Qiu J P and Guo W L 2017 Tunable bending stiffness of MoSe2/WSe2 heterobilayers from flexural wrinkling Nanotechnology 28 195701

    [94] Min K and Aluru N R 2011 Mechanical properties of graphene under shear deformation Appl. Phys. Lett. 98 013113

    [95] Sorkin V and Zhang Y W 2018 Mechanical properties of pristine and defective carbon-phosphide monolayers: a density functional tight-binding study Nanotechnology 29 435707

    [96] Jiang J-W and Park H S 2014 Negative Poisson’s ratio in single-layer black phosphorus Nat. Commun. 5 4727

    [97] Jiang J-W, Chang T, Guo X M and Park H S 2016 Intrinsic negative Poisson’s ratio for single-layer graphene Nano Lett. 16 5286–90

    [98] Sun H, Agrawal P and Singh C V 2021 A first-principles study of the relationship between modulus and ideal strength of single-layer, transition metal dichalcogenides Mater. Adv. 2 6631–40

    [99] Khoei A R and Khorrami M S 2016 Mechanical properties of graphene oxide: a molecular dynamics study Fuller. Nanotub. Carbon Nanostruct. 24 594–603

    [100] Lindsay L and Broido D A 2010 Optimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene Phys. Rev. B 81 205441

    [101] van Duin A C T, Dasgupta S, Lorant F and Goddard W A 2001 ReaxFF: a reactive force field for hydrocarbons J. Phys. Chem. A 105 9396–409

    [102] Chenoweth K, van Duin A C T and Goddard W A 2008 ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation J. Phys. Chem. A 112 1040–53

    [103] Plummer G, Thomas S, Zaeem M A and Tucker G J 2022 Bond-order potential for the surface-terminated titanium carbide MXene monolayers Tin+1CnTx (n=1, 2, or 3; T=-O or -F) Phys. Rev. B 106 054105

    [104] Liang T, Phillpot S R and Sinnott S B 2009 Parametrization of a reactive many-body potential for Mo–S systems Phys. Rev. B 79 245110

    [105] Jiang J-W 2015 Parametrization of Stillinger–Weber potential based on valence force field model: application to single-layer MoS2 and black phosphorus Nanotechnology 26 315706

    [106] Kandemir A, Yapicioglu H, Kinaci A, .a.g.n T and Sevik C 2016 Thermal transport properties of MoS2 and MoSe2 monolayers Nanotechnology 27 055703

    [107] Wen M J, Shirodkar S N, Plechác P, Kaxiras E, Elliott R S and Tadmor E B 2017 A force-matching Stillinger-Weber potential for MoS2: parameterization and fisher information theory based sensitivity analysis J. Appl. Phys. 122 244301

    [108] Jiang J-W, Park H S and Rabczuk T 2013 Molecular dynamics simulations of single-layer molybdenum disulphide (MoS2): Stillinger-Weber parametrization, mechanical properties, and thermal conductivity J. Appl. Phys. 114 064307

    [109] Los J H, Kroes J M H, Albe K, Gordillo R M, Katsnelson M I and Fasolino A 2017 Extended tersoff potential for boron nitride: energetics and elastic properties of pristine and defective h-BN Phys. Rev. B 96 184108

    [110] Chan H, Sasikumar K, Srinivasan S, Cherukara M, Narayanan B and Sankaranarayanan S K R S 2019 Machine learning a bond order potential model to study thermal transport in WSe2 nanostructures Nanoscale 11 10381–92

    [111] Zhang X, Nguyen H, Paci J T, Sankaranarayanan S K R S, Mendoza-Cortes J L and Espinosa H D 2021 Multi-objective parametrization of interatomic potentials for large deformation pathways and fracture of two-dimensional materials npj Comput. Mater. 7 113

    [112] Lipatov A et al 2020 Electrical and elastic properties of individual single-layer Nb4C3Tx MXene flakes Adv. Electron. Mater. 6 1901382

    [113] CaoK,FengSZ,HanY, GaoLB,HueLT, XuZP and Lu Y 2020 Elastic straining of free-standing monolayer graphene Nat. Commun. 11 284

    [114] Ostadhossein A, Rahnamoun A, Wang Y X, Zhao P, Zhang S L, Crespi V H and Van Duin A C T 2017 ReaxFF reactive force-field study of molybdenum disulfide (MoS2) J. Phys. Chem. Lett. 8 631–40

    [115] HanY, GaoLB,ZhouJZ,HouY, JiaYW, CaoK,DuanK and Lu Y 2022 Deep elastic strain engineering of 2D materials and their twisted bilayers ACS Appl. Mater. Interfaces 14 8655–63

    [116] Blundo E, Cappelluti E, Felici M, Pettinari G and Polimeni A 2021 Strain-tuning of the electronic, optical, and vibrational properties of two-dimensional crystals Appl. Phys. Rev. 8 021318

    [117] Zhang H 2015 Ultrathin two-dimensional nanomaterials ACS Nano 9 9451–69

    [118] Bertolazzi S, Brivio J and Kis A 2011 Stretching and breaking of ultrathin MoS2 ACS Nano 5 9703–9

    [119] Castellanos-Gomez A, Poot M, Steele G A, van der Zant H S J, Agra.t N and Rubio-Bollinger G 2012 Elastic properties of freely suspended MoS2 nanosheets Adv. Mater. 24 772–5

    [120] Zhou D, Feng G, Khosla H, Retterer S T and Li B 2022 Mechanical characterization of stacked single-crystal of polyethylene and monolayer MoSe2 Adv. Funct. Mater. 32 2201612

    [121] Falin A et al 2021 Mechanical properties of atomically thin tungsten dichalcogenides: WS2, WSe2, and WTe2 ACS Nano 15 2600–10

    [122] Liu K et al 2014 Elastic properties of chemical-vapor-deposited monolayer MoS2, WS2, and their bilayer heterostructures Nano Lett. 14 5097–103

    [123] Zhang R, Koutsos V and Cheung R 2016 Elastic properties of suspended multilayer WSe2 Appl. Phys. Lett. 108 042104

    [124] Jahn Y M and Ya’akobovitz A 2021 Outstanding stretchability and thickness-dependent mechanical properties of 2D HfS2, HfSe2, and hafnium oxide Nanoscale 13 18458–66

    [125] WangGR,ZhangZP, WangYL,GaoEL,JiaXZ,DaiZH, Weng C X, Liu L Q, Zhang Y F and Zhang Z 2021 Out-of-plane deformations determined mechanics of vanadium disulfide (VS2) sheets ACS Appl. Mater. Interfaces 13 3040–50

    [126] Lipatov A, Lu H D, Alhabeb M, Anasori B, Gruverman A, Gogotsi Y and Sinitskii A 2018 Elastic properties of 2D Ti3C2Tx MXene monolayers and bilayers Sci. Adv. 4 eaat0491

    [127] Wang H, Sandoz-Rosado E J, Hon Tsang S, Lin J J, Zhu M M, Mallick G, Liu Z and Teo E H T 2019 Elastic properties of 2D ultrathin tungsten nitride crystals grown by chemical vapor deposition Adv. Funct. Mater. 29 1902663

    [128] Harbola V, Crossley S, Hong S S, Lu D, Birkh.lzer Y A, Hikita Y and Hwang H Y 2021 Strain gradient elasticity in SrTiO3 membranes: bending versus stretching Nano Lett. 21 2470–5

    [129] Tu Q, Spanopoulos I, Yasaei P, Stoumpos C C, Kanatzidis M G, Shekhawat G S and Dravid V P 2018 Stretching and breaking of ultrathin 2D hybrid organic-inorganic perovskites ACS Nano 12 10347–54

    [130] Chitara B and Ya’akobovitz A 2018 Elastic properties and breaking strengths of GaS, GaSe and GaTe nanosheets Nanoscale 10 13022–7

    [131] Cantos-Prieto F, Falin A, Alliati M, Qian D, Zhang R, Tao T, Barnett M R, Santos E J G, Li L H and Navarro-Moratalla E 2021 Layer-dependent mechanical properties and enhanced plasticity in the van der Waals chromium trihalide magnets Nano Lett. 21 3379–85

    [132] Yan H, Vajner C, Kuhlman M, Guo L L, Li L, Araujo P T and Wang H-T 2016 Elastic behavior of Bi2Se3 2D nanosheets grown by van der Waals epitaxy Appl. Phys. Lett. 109 032103

    [133] Guo L L, Yan H M, Moore Q, Buettner M, Song J H, Li L, Araujo P T and Wang H-T 2015 Elastic properties of van der Waals epitaxy grown bismuth telluride 2D nanosheets Nanoscale 7 11915–21

    [134] LiYH et al 2019 Elastic properties and intrinsic strength of two-dimensional InSe flakes Nanotechnology 30 335703

    [135] Siskins M et al 2022 Nanomechanical probing and strain tuning of the curie temperature in suspended Cr2Ge2Te6-based heterostructures npj 2D Mater. Appl. 6 41

    [136] Hao Q, Zhao C Q, Sun B, Lu C, Liu J, Liu M J, Wan L-J and Wang D 2018 Confined synthesis of two-dimensional covalent organic framework thin films within superspreading water layer J. Am. Chem. Soc. 140 12152–8

    [137] Zeng Z X, Flyagina I S and Tan J-C 2020 Nanomechanical behavior and interfacial deformation beyond the elastic limit in 2D metal–organic framework nanosheets Nanoscale Adv. 2 5181–91

    [138] ChenWJ,KhanU,FengSM,DingBF, XuXMand Liu B L 2020 High-fidelity transfer of 2D Bi2O2Se and its mechanical properties Adv. Funct. Mater. 30 2004960

    [139] Sun Y F et al 2019 Elastic properties and fracture behaviors of biaxially deformed, polymorphic MoTe2 Nano Lett. 19 761–9

    [140] HuZH,Wu ZT, HanC,HeJ,NiZHandChenW2018 Two-dimensional transition metal dichalcogenides: interface and defect engineering Chem. Soc. Rev. 47 3100–28

    [141] Gogotsi Y and Huang Q 2021 MXenes: two-dimensional building blocks for future materials and devices ACS Nano 15 5775–80

    [142] Alhabeb M, Maleski K, Anasori B, Lelyukh P, Clark L, Sin S and Gogotsi Y 2017 Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene) Chem. Mater. 29 7633–44

    [143] WengCX,WangGR,DaiZH,PeiYM,LiuLQand Zhang Z 2019 Buckled AgNW/MXene hybrid hierarchical sponges for high-performance electromagnetic interference shielding Nanoscale 11 22804–12

    [144] WengCX,XingTL,JinH,WangGR,DaiZH,PeiMY, Liu L Q and Zhang Z 2020 Mechanically robust ANF/MXene composite films with tunable electromagnetic interference shielding performance Composites A 135 105927

    [145] Li Y X, Wei C J, Huang S H, Ghasemi A, Gao W, Wu C L and Mochalin V N 2021 In situ tensile testing of nanometer-thick two-dimensional transition-metal carbide films: implications for MXenes acting as nanoscale reinforcement agents ACS Appl. Nano Mater. 4 5058–67

    [146] Ding S-Y and Wang W 2013 Covalent organic frameworks (COFs): from design to applications Chem. Soc. Rev. 42 548–68

    [147] Feng X, Ding X S and Jiang D L 2012 Covalent organic frameworks Chem. Soc. Rev. 41 6010–22

    [148] Fang Q Y, Sui C, Wang C, Zhai T S, Zhang J, Liang J, Guo H, Sandoz-Rosado E and Lou J 2021 Strong and flaw-insensitive two-dimensional covalent organic frameworks Matter 4 1017–28

    [149] Zhou H C J and Kitagawa S 2014 Metal–organic frameworks (MOFs) Chem. Soc. Rev. 43 5415–8

    [150] Xian S K, Lin Y H, Wang H and Li J 2021 Calcium-based metal–organic frameworks and their potential applications Small 17 2005165

    [151] Zhou H-C, Long J R and Yaghi O M 2012 Introduction to metal-organic frameworks Chem. Rev. 112 673–4

    [152] Meek S T, Greathouse J A and Allendorf M D 2011 Metal-organic frameworks: a rapidly growing class of versatile nanoporous materials Adv. Mater. 23 249–67

    [153] Hermosa C, Horrocks B R, Martínez J I, Liscio F, Gómez-Herrero J and Zamora F 2015 Mechanical and optical properties of ultralarge flakes of a metal–organic framework with molecular thickness Chem. Sci. 6 2553–8

    [154] Tsai H et al 2016 High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells Nature 536 312–6

    [155] Snaith H J 2013 Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells J. Phys. Chem. Lett. 4 3623–30

    [156] Saparov B and Mitzi D B 2016 Organic-inorganic perovskites: structural versatility for functional materials design Chem. Rev. 116 4558–96

    [157] Kim D, Vasileiadou E S, Spanopoulos I, Kanatzidis M G and Tu Q 2021 In-plane mechanical properties of two-dimensional hybrid organic-inorganic perovskite nanosheets: structure-property relationships ACS Appl. Mater. Interfaces 13 31642–9

    [158] Reyes-Martinez M A, Tan P, Kakekhani A, Banerjee S, Zhumekenov A A, Peng W, Bakr O M, Rappe A M and Loo Y-L 2020 Unraveling the elastic properties of (quasi) two-dimensional hybrid perovskites: a joint experimental and theoretical study ACS Appl. Mater. Interfaces 12 17881–92

    [159] Yang Y C et al 2021 Intrinsic toughening and stable crack propagation in hexagonal boron nitride Nature 594 57–61

    [160] Song L et al 2010 Large scale growth and characterization of atomic hexagonal boron nitride layers Nano Lett. 10 3209–15

    [161] Banhart F, Kotakoski J and Krasheninnikov A V 2011 Structural defects in graphene ACS Nano 5 26–41

    [162] Dettori R, Cadelano E and Colombo L 2012 Elastic fields and moduli in defected graphene J. Phys.: Condens. Matter 24 104020

    [163] Ruiz-Vargas C S, Zhuang H L, Huang P Y, van der Zande A M, Garg S, McEuen P L, Muller D A, Hennig R G and Park J 2011 Softened elastic response and unzipping in chemical vapor deposition graphene membranes Nano Lett. 11 2259–63

    [164] Suk J W, Hao Y F, Liechti K M and Ruoff R S 2020 Impact of grain boundaries on the elastic behavior of transferred polycrystalline graphene Chem. Mater. 32 6078–84

    [165] XuJ,Yuan GW, ZhuQ,WangJW, TangSandGaoLB 2018 Enhancing the strength of graphene by a denser grain boundary ACS Nano 12 4529–35

    [166] Zandiatashbar A, Lee G-H, An S J, Lee S, Mathew N, Terrones M, Hayashi T, Picu C R, Hone J and Koratkar N 2014 Effect of defects on the intrinsic strength and stiffness of graphene Nat. Commun. 5 3186

    [167] López-Polín G, Gómez-Navarro C, Parente V, Guinea F, Katsnelson M I, Pérez-Murano F and Gómez-Herrero J 2015 Increasing the elastic modulus of graphene by controlled defect creation Nat. Phys. 11 26–31

    [168] Thiemann F L, Rowe P, Zen A, Müller E A and Michaelides A 2021 Defect-dependent corrugation in graphene Nano Lett. 21 8143–50

    [169] Song Z G and Xu Z P 2016 Geometrical effect ‘stiffens’ graphene membrane at finite vacancy concentrations Extreme Mech. Lett. 6 82–87

    [170] Fasolino A, Los J H and Katsnelson M I 2007 Intrinsic ripples in graphene Nat. Mater. 6 858–61

    [171] Xu P, Neek-Amal M, Barber S D, Schoelz J K, Ackerman M L, Thibado P M, Sadeghi A and Peeters F M 2014 Unusual ultra-low-frequency fluctuations in freestanding graphene Nat. Commun. 5 3720

    [172] Los J H, Fasolino A and Katsnelson M I 2017 Mechanics of thermally fluctuating membranes Npj 2D Mater. Appl. 1 9

    [173] Lyublinskaya A A, Babkin S S and Burmistrov I S 2020 Effect of anomalous elasticity on bubbles in van der Waals heterostructures Phys. Rev. E 101 033005

    [174] Gao W and Huang R 2014 Thermomechanics of monolayer graphene: rippling, thermal expansion and elasticity J. Mech. Phys. Solids 66 42–58

    [175] Wang P, Gao W and Huang R 2016 Entropic effects of thermal rippling on van der Waals interactions between monolayer graphene and a rigid substrate J. Appl. Phys. 119 074305

    [176] Ahmadpoor F, Wang P, Huang R and Sharma P 2017 Thermal fluctuations and effective bending stiffness of elastic thin sheets and graphene: a nonlinear analysis J. Mech. Phys. Solids 107 294–319

    [177] Ahmadpoor F and Sharma P 2017 A perspective on the statistical mechanics of 2D materials Extreme Mech. Lett. 14 38–43

    [178] Chen Y, Ouyang W G, Zhou K, Qin H S and Liu Y L 2022 Finite temperature mechanics of multilayer 2D materials Extreme Mech. Lett. 52 101612

    [179] Nicholl R J T, Conley H J, Lavrik N V, Vlassiouk I, Puzyrev Y S, Sreenivas V P, Pantelides S T and Bolotin K I 2015 The effect of intrinsic crumpling on the mechanics of free-standing graphene Nat. Commun. 6 8789

    [180] Nicholl R J T, Lavrik N V, Vlassiouk I, Srijanto B R and Bolotin K I 2017 Hidden area and mechanical nonlinearities in freestanding graphene Phys. Rev. Lett. 118 266101

    [181] López-Polín G, Jaafar M, Guinea F, Roldán R, Gómez-Navarro C and Gómez-Herrero J 2017 The influence of strain on the elastic constants of graphene Carbon 124 42–48

    [182] Lopez-Polin G, Gomez-Navarro C and Gomez-Herrero J 2022 The effect of rippling on the mechanical properties of graphene Nano Mater. Sci. 4 18–26

    [183] Storch I R, de Alba R, Adiga V P, Abhilash T S, Barton R A, Craighead H G, Parpia J M and Mceuen P L 2018 Young’s modulus and thermal expansion of tensioned graphene membranes Phys. Rev. B 98 085408

    [184] de Alba R, Abhilash T S, Hui A, Storch I R, Craighead H G and Parpia J M 2018 Temperature-dependence of stress and elasticity in wet-transferred graphene membranes J. Appl. Phys. 123 095109

    [185] Liu Z, Zhang S-M, Yang J-R, Liu J Z, Yang Y-L and Zheng Q-S 2012 Interlayer shear strength of single crystalline graphite Acta Mech. Sin. 28 978–82

    [186] Song Y M, Qu C Y, Ma M and Zheng Q S 2020 Structural superlubricity based on crystalline materials Small 16 1903018

    [187] Serles P et al 2022 High performance space lubrication of MoS2 with tantalum Adv. Funct. Mater. 32 2110429

    [188] Wei X D, Meng Z X, Ruiz L, Xia W J, Lee C, Kysar J W, Hone J C, Keten S and Espinosa H D 2016 Recoverable slippage mechanism in multilayer graphene leads to repeatable energy dissipation ACS Nano 10 1820–8

    [189] Ferrari G A et al 2018 Apparent softening of wet graphene membranes on a microfluidic platform ACS Nano 12 4312–20

    [190] Huang P, Guo D, Xie G X and Li J 2017 Softened mechanical properties of graphene induced by electric field Nano Lett. 17 6280–6

    [191] Reynolds W N and Montet G 1970 Physical properties of graphite Phys. Today 23 71

    [192] Zeng Z X and Tan J-C 2017 AFM nanoindentation to quantify mechanical properties of nano-and micron-sized crystals of a metal-organic framework material ACS Appl. Mater. Interfaces 9 39839–54

    [193] Bundschuh S, Kraft O, Arslan H K, Gliemann H, Weidler P G and W.ll C 2012 Mechanical properties of metal-organic frameworks: an indentation study on epitaxial thin films Appl. Phys. Lett. 101 101910

    [194] Tu Q, Spanopoulos I, Hao S Q, Wolverton C, Kanatzidis M G, Shekhawat G S and Dravid V P 2018 Out-of-plane mechanical properties of 2D hybrid organic-inorganic perovskites by nanoindentation ACS Appl. Mater. Interfaces 10 22167–73

    [195] Gao Y et al 2015 Elastic coupling between layers in two-dimensional materials Nat. Mater. 14 714–20

    [196] Wang Q H et al 2012 Understanding and controlling the substrate effect on graphene electron-transfer chemistry via reactivity imprint lithography Nat. Chem. 4 724–32

    [197] Zhang X, Han W P, Wu J B, Milana S, Lu Y, Li Q Q, Ferrari A C and Tan P H 2013 Raman spectroscopy of shear and layer breathing modes in multilayer MoS2 Phys. Rev. B 87 115413

    [198] Stenger I, Schué L, Boukhicha M, Berini B, Pla.ais B, Loiseau A and Barjon J 2017 Low frequency Raman spectroscopy of few-atomic-layer thick hBN crystals 2D Mater. 4 031003

    [199] Tan P H et al 2012 The shear mode of multilayer graphene Nat. Mater. 11 294–300

    [200] Wang G R et al 2017 Interlayer coupling behaviors of boron doped multilayer graphene J. Phys. Chem. C 121 26034–43

    [201] Wu JB,LinML,CongX,LiuHNandTan PH2018 Raman spectroscopy of graphene-based materials and its applications in related devices Chem. Soc. Rev. 47 1822–73

    [202] Zhao Y Y et al 2013 Interlayer breathing and shear modes in few-trilayer MoS2 and WSe2 Nano Lett. 13 1007–15

    [203] Wang H, Feng M, Zhang X, Tan P-H and Wang Y F 2015 In-phase family and self-similarity of interlayer vibrational frequencies in van der Waals layered materials J. Phys. Chem. C 119 6906–11

    [204] Come J, Xie Y, Naguib M, Jesse S, Kalinin S V, Gogotsi Y, Kent P R C and Balke N 2016 Nanoscale elastic changes in 2D Ti3C2Tx (MXene) pseudocapacitive electrodes Adv. Energy Mater. 6 1502290

    [205] Cao C H, Mukherjee S, Howe J Y, Perovic D D, Sun Y, Singh C V and Filleter T 2018 Nonlinear fracture toughness measurement and crack propagation resistance of functionalized graphene multilayers Sci. Adv. 4 eaao7202

    [206] Zhang P et al 2014 Fracture toughness of graphene Nat. Commun. 5 3782

    [207] Zhang Z L et al 2019 Crack propagation and fracture toughness of graphene probed by Raman spectroscopy ACS Nano 13 10327–32

    [208] Kim D B, Lee J W and Cho Y S 2021 Anisotropic in situ strain-engineered halide perovskites for high mechanical flexibility Adv. Funct. Mater. 31 2007131

    [209] Griffith A A 1921 VI. The phenomena of rupture and flow in solids Phil. Trans. R. Soc. A 221 163–98

    [210] Firestein K L et al 2020 Young’s modulus and tensile strength of Ti3C2 MXene nanosheets as revealed by in situ TEM probing, AFM nanomechanical mapping, and theoretical calculations Nano Lett. 20 5900–8

    [211] YinHQ,QiHJ,Fan FF, ZhuT, WangBLandWeiYJ 2015 Griffith criterion for brittle fracture in graphene Nano Lett. 15 1918–24

    [212] FengSZ,CaoK,GaoY, HanY, LiuZL,LuYandXuZP 2022 Experimentally measuring weak fracture toughness anisotropy in graphene Commun. Mater. 3 28

    [213] Wei X L, Xiao S, Li F X, Tang D-M, Chen Q, Bando Y and Golberg D 2015 Comparative fracture toughness of multilayer graphenes and boronitrenes Nano Lett. 15 689–94

    [214] Zhao X, Mao B Y, Liu M F, Cao J Y, Haigh S J, Papageorgiou D G, Li Z L and Young R J 2022 Controlling and monitoring crack propagation in monolayer graphene single crystals Adv. Funct. Mater. 32 2202373

    [215] Na S R, Wang X H, Piner R D, Huang R, Willson C G and Liechti K M 2016 Cracking of polycrystalline graphene on copper under tension ACS Nano 10 9616–25

    [216] Xia Z C and Hutchinson J W 2000 Crack patterns in thin films J. Mech. Phys. Solids 48 1107–31

    [217] Chen M et al 2020 Controlled fragmentation of single-atom-thick polycrystalline graphene Matter 2 666–79

    [218] Zhang T, Li X Y and Gao H J 2015 Fracture of graphene: a review Int. J. Fract. 196 1–31

    [219] Zhan H, Tan X F, Xie G X and Guo D 2021 Reduced fracture strength of 2D materials induced by interlayer friction Small 17 2005996

    [220] Li P F, Jiang C C, Xu S, Zhuang Y, Gao L B, Hu A, WangH T and Lu Y 2017 In situ nanomechanical characterization of multi-layer MoS2 membranes: from intraplanar to interplanar fracture Nanoscale 9 9119–28

    [221] Jang B, Kim B, Kim J-H, Lee H-J, Sumigawa T and Kitamura T 2017 Asynchronous cracking with dissimilar paths in multilayer graphene Nanoscale 9 17325–33

    [222] Jung G S, Wang S S, Qin Z, Martin-Martinez F J, Warner J H and Buehler M J 2018 Interlocking friction governs the mechanical fracture of bilayer MoS2 ACS Nano 12 3600–8

    [223] Lin Q-Y, Zeng Y-H, Liu D M, Jing G Y, Liao Z-M and Yu D P 2014 Step-by-step fracture of two-layer stacked graphene membranes ACS Nano 8 10246–51

    [224] Dai Z H et al 2019 Mechanical responses of boron-doped monolayer graphene Carbon 147 594–601

    [225] Susarla S, Manimunda P, Jaques Y M, Hachtel J A, Idrobo J C, Asif S A S, Galv.aoD S,TiwaryC S and Ajayan P M 2019 Strain-induced structural deformation study of 2D MoxW(1-x) S2 Adv. Mater. Interfaces 6 1801262

    [226] Apte A et al 2018 Structural phase transformation in strained monolayer MoWSe2 alloy ACS Nano 12 3468–76

    [227] WeiYJ,Wu JT, YinHQ,ShiXH,YangRGand Dresselhaus M 2012 The nature of strength enhancement and weakening by pentagon-heptagon defects in graphene Nat. Mater. 11 759–63

    [228] Rasool H I, Ophus C, Klug W S, Zettl A and Gimzewski J K 2013 Measurement of the intrinsic strength of crystalline and polycrystalline graphene Nat. Commun. 4 2811

    [229] López-Polín G, Gómez-Herrero J and Gómez-Navarro C 2015 Confining crack propagation in defective graphene Nano Lett. 15 2050–4

    [230] Manzanares-Negro Y, López-Polín G, Fujisawa K, Zhang T Y, Zhang F, Kahn E, Perea-López N, Terrones M, Gómez-Herrero J and Gómez-Navarro C 2021 Confined crack propagation in MoS2 monolayers by creating atomic vacancies ACS Nano 15 1210–6

    [231] Xu L Q, Wei N and Zheng Y P 2013 Mechanical properties of highly defective graphene: from brittle rupture to ductile fracture Nanotechnology 24 505703

    [232] Carpenter C, Maroudas D and Ramasubramaniam A 2013 Mechanical properties of irradiated single-layer graphene Appl. Phys. Lett. 103 013102

    [233] Wang S S, Qin Z, Jung G S, Martin-Martinez F J, Zhang K, Buehler M J and Warner J H 2016 Atomically sharp crack tips in monolayer MoS2 and their enhanced toughness by vacancy defects ACS Nano 10 9831–9

    [234] Daly M, Reeve M and Singh C V 2015 Effects of topological point reconstructions on the fracture strength and deformation mechanisms of graphene Comput. Mater. Sci. 97 172–80

    [235] Daly M and Singh C V 2014 A kinematic study of energy barriers for crack formation in graphene tilt boundaries J. Appl. Phys. 115 223513

    [236] Xiao J R, Staniszewski J and Gillespie J W 2010 Tensile behaviors of graphene sheets and carbon nanotubes with multiple Stone-Wales defects Mater. Sci. Eng. A 527 715–23

    [237] Grantab R, Shenoy V B and Ruoff R S 2010 Anomalous strength characteristics of tilt grain boundaries in graphene Science 330 946–8

    [238] Fox A, Ray U and Li T 2019 Strength of graphene grain boundaries under arbitrary in-plane tension Carbon 142 388–400

    [239] Zhang T, Li X Y, Kadkhodaei S and Gao H Q 2012 Flaw insensitive fracture in nanocrystalline graphene Nano Lett. 12 4605–10

    [240] Mukherjee S, Alicandri R and Singh C V 2020 Strength of graphene with curvilinear grain boundaries Carbon 158 808–17

    [241] Zhao H and Aluru N R 2010 Temperature and strain-rate dependent fracture strength of graphene J. Appl. Phys. 108 064321

    [242] Thomas S, Ajith K M and Valsakumar M C 2017 Empirical potential influence and effect of temperature on the mechanical properties of pristine and defective hexagonal boron nitride Mater. Res. Express 4 065005

    [243] Sagar T C and Chinthapenta V 2020 Effect of substitutional and vacancy defects on the electrical and mechanical properties of 2D-hexagonal boron nitride J. Mol. Model. 26 192

    [244] Ahmed T, Procak A, Hao T Y and Hossain Z M 2019 Strong anisotropy in strength and toughness in defective hexagonal boron nitride Phys. Rev. B 99 134105

    [245] Gao C, Yang X Y, Jiang M, Chen L X, Chen Z W and Singh C V 2021 Defect evolution behaviors from single sulfur point vacancies to line vacancies in monolayer molybdenum disulfide Phys. Chem. Chem. Phys. 23 19525–36

    [246] Gao J F, Cheng Y, Tian T, Hu X L, Zeng K Y, Zhang G and Zhang Y-W 2017 Structure, stability, and kinetics of vacancy defects in monolayer PtSe2: a first-principles study ACS Omega 2 8640–8

    [247] Li Y, Chen P J, Zhang C, Peng J, Gao F and Liu H 2019 Molecular dynamics simulation on the buckling of single-layer MoS2 sheet with defects under uniaxial compression Comput. Mater. Sci. 162 116–23

    [248] Cai Y Q, Chen S, Gao J F, Zhang G and Zhang Y-W 2019 Evolution of intrinsic vacancies and prolonged lifetimes of vacancy clusters in black phosphorene Nanoscale 11 20987–95

    [249] Ghasemi A and Gao W 2020 Atomistic mechanism of stress modulated phase transition in monolayer MoTe2 Extreme Mech. Lett. 40 100946

    [250] Ghasemi A and Gao W 2020 A method to predict energy barriers in stress modulated solid–solid phase transitions J. Mech. Phys. Solids 137 103857

    [251] Wang W D, Li L L, Yang C G, Soler-Crespo R A, Meng Z X, Li M L, Zhang X, Keten S and Espinosa H D 2017 Plasticity resulted from phase transformation for monolayer molybdenum disulfide film during nanoindentation simulations Nanotechnology 28 164005

    [252] Sorkin V, Cai Y Q, Srolovitz D J and Zhang Y W 2018 Mechanical twinning in phosphorene Extreme Mech. Lett. 19 15–19

    [253] Sandoz-Rosado E, Beaudet T D, Balu R and Wetzel E D 2016 Designing molecular structure to achieve ductile fracture behavior in a stiff and strong 2D polymer, ‘graphylene’ Nanoscale 8 10947–55

    [254] Najafi F, Wang G R, Mukherjee S, Cui T, Filleter T and Singh C V 2020 Toughening of graphene-based polymer nanocomposites via tuning chemical functionalization Compos. Sci. Technol. 194 108140

    [255] Zhang X, Nguyen H, Daly M, Nguyen S T and Espinosa H D 2019 Nanoscale toughening of ultrathin graphene oxide-polymer composites: mechanochemical insights into hydrogen-bonding/van der Waals interactions, polymer chain alignment, and steric parameters Nanoscale 11 12305–16

    [256] Fajri A, Prabowo A R, Muhayat N, Smaradhana D F and Bahatmaka A 2021 Fatigue analysis of engineering structures: state of development and achievement Proc. Struct. Integr. 33 19–26

    [257] Kim S J, Choi K, Lee B, Kim Y and Hong B H 2015 Materials for flexible, stretchable electronics: graphene and 2D materials Annu. Rev. Mater. Res. 45 63–84

    [258] Song Z G, Wang Y L and Xu Z P 2015 Mechanical responses of the bio-nano interface: a molecular dynamics study of graphene-coated lipid membrane Theor. Appl. Mech. Lett. 5 231–5

    [259] Li X D and Bhushan B 2003 Fatigue studies of nanoscale structures for MEMS/NEMS applications using nanoindentation techniques Surf. Coat. Technol. 163–164 521–6

    [260] Jiang C C, Hu D Y and Lu Y 2016 Digital micromirror device (DMD)-based high-cycle torsional fatigue testing micromachine for 1D nanomaterials Micromachines 7 49

    [261] Larsen K P, Rasmussen A A, Ravnkilde J T, Ginnerup M and Hansen O 2003 MEMS device for bending test: measurements of fatigue and creep of electroplated nickel Sens. Actuators A 103 156–64

    [262] LiPF et al 2014 In situ transmission electron microscopy investigation on fatigue behavior of single ZnO wires under high-cycle strain Nano Lett. 14 480–5

    [263] Bai Y X et al 2020 Super-durable ultralong carbon nanotubes Science 369 1104–6

    [264] Hosseinian E and Pierron O N 2013 Quantitative in situ TEM tensile fatigue testing on nanocrystalline metallic ultrathin films Nanoscale 5 12532–41

    [265] Lu Y, Ganesan Y and Lou J 2010 A multi-step method for in situ mechanical characterization of 1D nanostructures using a novel micromechanical device Exp. Mech. 50 47–54

    [266] Zhang H, Jiang C and Lu Y 2017 Low-cycle fatigue testing of Ni nanowires based on a micro-mechanical device Exp. Mech. 57 495–500

    [267] Zhang J Y, Zhang X, Liu G, Wang R H, Zhang G J and Sun J 2011 Length scale dependent yield strength and fatigue behavior of nanocrystalline Cu thin films Mate. Sci. Eng. A 528 7774–80

    [268] Cui T, Mukherjee S, Sudeep P M, Colas G, Najafi F, Tam J, Ajayan P M, Singh C V, Sun Y and Filleter T 2020 Fatigue of graphene Nat. Mater. 19 405–11

    [269] Cui T, Yip K, Hassan A, Wang G R, Liu X J, Sun Y and Filleter T 2020 Graphene fatigue through van der Waals interactions Sci. Adv. 6 eabb1335

    [270] Najafi F, Wang G R, Cui T, Anand A, Mukherjee S, Filleter T, Sain M and Singh C V 2021 Fatigue resistance of atomically thin graphene oxide Carbon 183 780–8

    [271] Amirmaleki M, Cui T, Zhao Y, Tam J, Goel A, Sun Y, Sun X L and Filleter T 2021 Fracture and fatigue of Al2O3-graphene nanolayers Nano Lett. 21 437–44

    [272] Cui T et al 2022 Mechanical reliability of monolayer MoS2 and WSe2 Matter 5 2975–89

    [273] Filleter T, McChesney J L, Bostwick A, Rotenberg E, Emtsev K V, Seyller T, Horn K and Bennewitz R 2009 Friction and dissipation in epitaxial graphene films Phys. Rev. Lett. 102 086102

    [274] Lee C, Li Q Y, Kalb W, Liu X-Z, Berger H, Carpick R W and Hone J 2010 Frictional characteristics of atomically thin sheets Science 328 76–80

    [275] Serles P, Hamidinejad M, Demingos P G, Ma L, Barri N, Taylor H, Singh C V, Park C B and Filleter T 2022 Friction of Ti3C2Tx MXenes Nano Lett. 22 3356–63

    [276] Tan S C, Wang K P, Zeng Q D and Liu Y H 2022 Insight into the nanotribological mechanism of two-dimensional covalent organic frameworks ACS Appl. Mater. Interfaces 14 40173–81

    [277] Vazirisereshk M R, Hasz K, Zhao M-Q, Johnson A T C, Carpick R W and Martini A 2020 Nanoscale friction behavior of transition-metal dichalcogenides: role of the chalcogenide ACS Nano 14 16013–21

    [278] CaiS,Tao Y, ZhaoWW, HuangSY, SunCD,AnXH, Zhang Y, Wei Z Y, Ni Z H and Chen Y F 2022 Nanoscale friction behavior of monolayer MoxW1.xS2 alloy Tribol. Int. 166 107363

    [279] Yadav S, Arif T, Wang G R, Sodhi R N S, Cheng Y H, Filleter T and Singh C V 2021 Interfacial interactions and tribological behavior of metal-oxide/2D-material contacts Tribol. Lett. 69 91

    [280] Serles P et al 2021 Friction of magnetene, a non-van der Waals 2D material Sci. Adv. 7 eabk2041

    [281] Zhang S, Ma T B, Erdemir A and Li Q Y 2019 Tribology of two-dimensional materials: from mechanisms to modulating strategies Mater. Today 26 67–86

    [282] Rejhon M, Lavini F, Khosravi A, Shestopalov M, Kunc J, Tosatti E and Riedo E 2022 Relation between interfacial shear and friction force in 2D materials Nat. Nanotechnol. 17 1280–7

    [283] Zhang D L, Li Z B, Klausen L H, Li Q and Dong M D 2022 Friction behaviors of two-dimensional materials at the nanoscale Mater. Today Phys. 27 100771

    [284] Dai Z H, Liu L Q and Zhang Z 2019 Strain engineering of 2D materials: issues and opportunities at the interface Adv. Mater. 31 1805417

    [285] Zhang S, Hou Y, Li S Z, Liu L Q, Zhang Z, Feng X-Q and Li Q Y 2019 Tuning friction to a superlubric state via in-plane straining Proc. Natl Acad. Sci. USA 116 24452–6

    [286] Xu C C, Zhang S, Du H Z, Xue T, Kang Y L, Zhang Y, Zhao P and Li Q Y 2022 Revisiting frictional characteristics of graphene: effect of in-plane straining ACS Appl. Mater. Interfaces 14 41571–6

    [287] Xu M Y, Zhang D L, Wang Y, Zhang Y G, Li Q and Dong M D 2022 Nanoscale friction of strained molybdenum disulfide induced by nanoblisters Appl. Phys. Lett. 120 151601

    [288] Meng Y G, Xu J, Jin Z M, Prakash B and Hu Y Z 2020 A review of recent advances in tribology Friction 8 221–300

    [289] Lang H J, Peng Y T, Shao G W, Zou K and Tao G M 2019 Dual control of the nanofriction of graphene J. Mater. Chem. C 7 6041–51

    [290] Lang H J, Peng Y T, Cao X A and Zou K 2020 Atomic-scale friction characteristics of graphene under conductive AFM with applied voltages ACS Appl. Mater. Interfaces 12 25503–11

    [291] ShiB,GanXH,LangHJ,ZouK,WangLF, SunJH, Lu Y Y and Peng Y T 2021 Ultra-low friction and patterning on atomically thin MoS2 via electronic tight-binding Nanoscale 13 16860–71

    [292] SongAS,ShiRY, LuHL,WangXY, HuYZ,GaoH-J, Luo J B and Ma T B 2022 Fluctuation of interfacial electronic properties induces friction tuning under an electric field Nano Lett. 22 1889–96

    [293] Zhang Y, Dong M, Gueye B, Ni Z H, Wang Y J and Chen Y F 2015 Temperature effects on the friction characteristics of graphene Appl. Phys. Lett. 107 011601

    [294] Greiner C, Felts J R, Dai Z T, King W P and Carpick R W 2010 Local nanoscale heating modulates single-asperity friction Nano Lett. 10 4640–5

    [295] Gong P and Egberts P 2021 Influence of heating on the measured friction behavior of graphene evaluated under ultra-high vacuum conditions Appl. Phys. Lett. 119 063102

    [296] Paolicelli G, Tripathi M, Corradini V, Candini A and Valeri S 2015 Nanoscale frictional behavior of graphene on SiO2 and Ni(111) substrates Nanotechnology 26 055703

    [297] Arif T, Colas G and Filleter T 2018 Effect of humidity and water intercalation on the tribological behavior of graphene and graphene oxide ACS Appl. Mater. Interfaces 10 22537–44

    [298] Arif T, Yadav S, Colas G, Singh C V and Filleter T 2019 Understanding the independent and interdependent role of water and oxidation on the tribology of ultrathin molybdenum disulfide (MoS2) Adv. Mater. Interfaces 6 1901246

    [299] Arif T, Wang G R, Sodhi R N S, Colas G and Filleter T 2021 Role of chemical vs. physical interfacial interaction and adsorbed water on the tribology of ultrathin 2D-material/steel interfaces Tribol. Int. 163 107194

    [300] Vilhena J G, Pimentel C, Pedraz P, Luo F, Serena P A, Pina C M, Gnecco E and Pérez R 2016 Atomic-scale sliding friction on graphene in water ACS Nano 10 4288–93

    [301] Liu S-W et al 2017 Robust microscale superlubricity under high contact pressure enabled by graphene-coated microsphere Nat. Commun. 8 14029

    [302] Tian J S, Yin X, Li J J, Qi W, Huang P, Chen X C and Luo J B 2020 Tribo-induced interfacial material transfer of an atomic force microscopy probe assisting superlubricity in a WS2/Graphene heterojunction ACS Appl. Mater. Interfaces 12 4031–40

    [303] Carpick R W, Ogletree D F and Salmeron M 1999 A general equation for fitting contact area and friction vs load measurements J. Colloid Interface Sci. 211 395–400

    [304] Zheng Q S, Jiang B, Liu S P, Weng Y X, Lu L, Xue Q K, Zhu J, Jiang Q, Wang S and Peng L M 2008 Self-retracting motion of graphite microflakes Phys. Rev. Lett. 100 067205

    [305] Liu Z, Yang J R, Grey F, Liu J Z, Liu Y L, Wang Y B, Yang Y L, Cheng Y and Zheng Q S 2012 Observation of microscale superlubricity in graphite Phys. Rev. Lett. 108 205503

    [306] Wang K Q, Qu C Y, Wang J, Quan B G and Zheng Q S 2020 Characterization of a microscale superlubric graphite interface Phys. Rev. Lett. 125 026101

    [307] Li H, Wang J H, Gao S, Chen Q, Peng L M, Liu K H and Wei X L 2017 Superlubricity between MoS2 monolayers Adv. Mater. 29 1701474

    [308] Liao M Z et al 2022 UItra-low friction and edge-pinning effect in large-lattice-mismatch van der Waals heterostructures Nat. Mater. 21 47–53

    [309] Liu Y M, Song A S, Xu Z, Zong R L, Zhang J, Yang W Y, Wang R, Hu Y Z, Luo J B and Ma T B 2018 Interlayer friction and superlubricity in single-crystalline contact enabled by two-dimensional flake-wrapped atomic force microscope tips ACS Nano 12 7638–46

    [310] Conley H, Lavrik N V, Prasai D and Bolotin K I 2011 Graphene bimetallic-like cantilevers: probing graphene/substrate interactions Nano Lett. 11 4748–52

    [311] Wang G R, Liu L Q, Dai Z H, Liu Q, Miao H and Zhang Z 2015 Biaxial compressive behavior of embedded monolayer graphene inside flexible poly (methyl methacrylate) matrix Carbon 86 69–77

    [312] Wang G R, Liu L Q and Zhang Z 2021 Interface mechanics in carbon nanomaterials-based nanocomposites Composites A 141 106212

    [313] Sun Y F et al 2022 Determining the interlayer shearing in twisted bilayer MoS2 by nanoindentation Nat. Commun. 13 3898

    [314] Androulidakis C, Koukaras E N, Paterakis G, Trakakis G and Galiotis C 2020 Tunable macroscale structural superlubricity in two-layer graphene via strain engineering Nat. Commun. 11 1595

    [315] DouWB,XuCC,GuoJG,DuHZ,QiuW, XueT, Kang Y L and Zhang Q 2018 Interfacial mechanical properties of double-layer graphene with consideration of the effect of stacking mode ACS Appl. Mater. Interfaces 10 44941–9

    [316] DuHZ,KangYL,XuCC,XueT, QiuWandXieHM 2022 Measurement and characterization of interfacial mechanical properties of graphene/MoS2 heterostructure by Raman and photoluminescence (PL) spectroscopy Opt. Lasers Eng. 149 106825

    [317] Dai Z H, Lu N S, Liechti K M and Huang R 2020 Mechanics at the interfaces of 2D materials: challenges and opportunities Curr. Opin. Solid State Mater. Sci. 24 100837

    [318] Wang G R 2017 Study on Characterization and Modification of Graphene-Based Interfacial Mechanical Behavior (Singapore: Springer)

    [319] Wang G R and Liu L Q 2022 Interfacial mechanics of polymer nanocomposites Reference Module in Materials Science and Materials Engineering (Edinburgh: Elsevier) (https://doi.org/10.1016/B978-0-12-822944-6.00075-X)

    [320] Liechti K M 2019 Characterizing the interfacial behavior of 2D materials: a review Exp. Mech. 59 395–412

    [321] Gong L, Kinloch I A, Young R J, Riaz I, Jalil R and Novoselov K S 2010 Interfacial stress transfer in a graphene monolayer nanocomposite Adv. Mater. 22 2694–7

    [322] Jiang T, Huang R and Zhu Y 2014 Interfacial sliding and buckling of monolayer graphene on a stretchable substrate Adv. Funct. Mater. 24 396–402

    [323] Papageorgiou D G, Li Z L, Liu M F, Kinloch I A and Young R J 2020 Mechanisms of mechanical reinforcement by graphene and carbon nanotubes in polymer nanocomposites Nanoscale 12 2228–67

    [324] Liu M F, Zhuo Y L, Sarycheva A, Gogotsi Y, Bissett M A, Young R J and Kinloch I A 2022 Deformation of and interfacial stress transfer in Ti3C2 MXene-polymer composites ACS Appl. Mater. Interfaces 14 10681–90

    [325] Xu C C, Xue T, Qiu W and Kang Y L 2016 Size effect of the interfacial mechanical behavior of graphene on a stretchable substrate ACS Appl. Mater. Interfaces 8 27099–106

    [326] Huang M Y, Yan H G, Chen C Y, Song D H, Heinz T F and Hone J 2009 Phonon softening and crystallographic orientation of strained graphene studied by Raman spectroscopy Proc. Natl Acad. Sci. USA 106 7304–8

    [327] Mohiuddin T M G et al 2009 Uniaxial strain in graphene by Raman spectroscopy:G peak splitting, Grüneisen parameters, and sample orientation Phys. Rev. B 79 205433

    [328] Gong L, Young R J, Kinloch I A, Riaz I, Jalil R and Novoselov K S 2012 Optimizing the reinforcement of polymer-based nanocomposites by graphene ACS Nano 6 2086–95

    [329] Wang W M, Li Z L, Marsden A J, Bissett M A and Young R J 2021 Interlayer and interfacial stress transfer in hBN nanosheets 2D Mater. 8 035058

    [330] Li Z L, Young R J, Papageorgiou D G, Kinloch I A, Zhao X, Yang C and Hao S J 2019 Interfacial stress transfer in strain engineered wrinkled and folded graphene 2D Mater. 6 045026

    [331] WangGR,GaoEL,DaiZH,LiuLQ,XuZPandZhangZ 2017 Degradation and recovery of graphene/polymer interfaces under cyclic mechanical loading Compos. Sci. Technol. 149 220–7

    [332] Androulidakis C, Koukaras E N, Rahova J, Sampathkumar K, Parthenios J, Papagelis K, Frank O and Galiotis C 2017 Wrinkled few-layer graphene as highly efficient load bearer ACS Appl. Mater. Interfaces 9 26593–601

    [333] XuCC,Yao QZ,DuHZ,HongCY, XueT, KangYLand Li Q Y 2021 Abnormal Raman characteristics of graphene originating from contact interface inhomogeneity ACS Appl. Mater. Interfaces 13 22040–6

    [334] DuHZ,XueT, XuCC,KangYLandDouWB2018 Improvement of mechanical properties of graphene/substrate interface via regulation of initial strain through cyclic loading Opt. Lasers Eng. 110 356–63

    [335] Yu J, Kim S, Ertekin E and van der Zande A M 2020 Material-dependent evolution of mechanical folding instabilities in two-dimensional atomic membranes ACS Appl. Mater. Interfaces 12 10801–8

    [336] Compton O C, Cranford S W, Putz K W, An Z, Brinson L C, Buehler M J and Nguyen S T 2012 Tuning the mechanical properties of graphene oxide paper and its associated polymer nanocomposites by controlling cooperative intersheet hydrogen bonding ACS Nano 6 2008–19

    [337] Soler-Crespo R A, Gao W, Mao L, Nguyen H T, Roenbeck M R, Paci J T, Huang J X, Nguyen S T and Espinosa H D 2018 The role of water in mediating interfacial adhesion and shear strength in graphene oxide ACS Nano 12 6089–99

    [338] Choi J Y, Zhang X, Nguyen H T, Roenbeck M R, Mao L, Soler-Crespo R, Nguyen S T and Espinosa H D 2021 Atomistic mechanisms of adhesion and shear strength in graphene oxide-polymer interfaces J. Mech. Phys. Solids 156 104578

    [339] Monastyreckis G, Mishnaevsky L, Hatter C B, Aniskevich A, Gogotsi Y and Zeleniakiene D 2020 Micromechanical modeling of MXene-polymer composites Carbon 162 402–9

    [340] Sliozberg Y, Andzelm J, Hatter C B, Anasori B, Gogotsi Y and Hall A 2020 Interface binding and mechanical properties of MXene-epoxy nanocomposites Compos. Sci. Technol. 192 108124

    [341] Hou Y, Dai Z H, Zhang S, Feng S Z, Wang G R, Liu L Q, Xu Z P, Li Q Y and Zhang Z 2021 Elastocapillary cleaning of twisted bilayer graphene interfaces Nat. Commun. 12 5069

    [342] Gupta S, Yu H and Yakobson B I 2022 Designing 1D correlated-electron states by non-Euclidean topography of 2D monolayers Nat. Commun. 13 3103

    [343] Cao C H, Wu T Y and Sun Y 2021 A review of assembly techniques for fabricating twisted bilayer graphene J. Micromech. Microeng. 31 114004

    [344] Brennan C J, Nguyen J, Yu E T and Lu N S 2015 Interface adhesion between 2D materials and elastomers measured by buckle delaminations Adv. Mater. Interfaces 2 1500176

    [345] Gowthami T, Tamilselvi G, Jacob G and Raina G 2015 The role of ambient ice-like water adlayers formed at the interfaces of graphene on hydrophobic and hydrophilic substrates probed using scanning probe microscopy Phys. Chem. Chem. Phys. 17 13964–72

    [346] Sanchez D A, Dai Z H, Wang P, Cantu-Chavez A, Brennan C J, Huang R and Lu N S 2018 Mechanics of spontaneously formed nanoblisters trapped by transferred 2D crystals Proc. Natl Acad. Sci. USA 115 7884–9

    [347] Temmen M, Ochedowski O, Schleberger M, Reichling M and Bollmann T R J 2014 Hydration layers trapped between graphene and a hydrophilic substrate New J. Phys. 16 053039

    [348] Kretinin A V et al 2014 Electronic properties of graphene encapsulated with different two-dimensional atomic crystals Nano Lett. 14 3270–6

    [349] LiYX,HuangSH,WeiCJ,ZhouD,LiB,Wu CLand Mochalin V N 2021 Adhesion between MXenes and other 2D materials ACS Appl. Mater. Interfaces 13 4682–91

    [350] Li P, You Z and Cui T H 2014 Adhesion energy of few layer graphene characterized by atomic force microscope Sens. Actuators A 217 56–61

    [351] Rokni H and Lu W 2020 Direct measurements of interfacial adhesion in 2D materials and van der Waals heterostructures in ambient air Nat. Commun. 11 5607

    [352] Liu Z, Liu J Z, Cheng Y, Li Z H, Wang L and Zheng Q S 2012 Interlayer binding energy of graphite: a mesoscopic determination from deformation Phys. Rev. B 85 205418

    [353] Wang J, Sorescu D C, Jeon S, Belianinov A, Kalinin S V, Baddorf A P and Maksymovych P 2016 Atomic intercalation to measure adhesion of graphene on graphite Nat. Commun. 7 13263

    [354] Scharfenberg S, Rocklin D Z, Chialvo C, Weaver R L, Goldbart P M and Mason N 2011 Probing the mechanical properties of graphene using a corrugated elastic substrate Appl. Phys. Lett. 98 091908

    [355] Jiang T and Zhu Y 2015 Measuring graphene adhesion using atomic force microscopy with a microsphere tip Nanoscale 7 10760–6

    [356] Na S R, Kim Y, Lee C, Liechti K M and Suk J W 2017 Adhesion and self-healing between monolayer molybdenum disulfide and silicon oxide Sci. Rep. 7 14740

    [357] Das S, Lahiri D, Lee D-Y, Agarwal A and Choi W 2013 Measurements of the adhesion energy of graphene to metallic substrates Carbon 59 121–9

    [358] Gong P, Li Q Y, Liu X-Z, Carpick R W and Egberts P 2017 Adhesion mechanics between nanoscale silicon oxide tips and few-layer graphene Tribol. Lett. 65 61

    [359] Megra Y T and Suk J W 2019 Adhesion properties of 2D materials J. Phys. D: Appl. Phys. 52 364002

    [360] Akinwande D et al 2017 A review on mechanics and mechanical properties of 2D materials—graphene and beyond Extreme Mech. Lett. 13 42–77

    [361] FangZ,DaiZH,WangBJ,TianZZ,Yu CL,ChenQ and Wei X L 2023 Pull-to-peel of two-dimensional materials for the simultaneous determination of elasticity and adhesion Nano Lett. 23 742–9

    [362] Suk J W, Na S R, Stromberg R J, Stauffer D, Lee J, Ruoff R S and Liechti K M 2016 Probing the adhesion interactions of graphene on silicon oxide by nanoindentation Carbon 103 63–72

    [363] LiYX,HuangSH,WeiCJ,Wu CLandMochalinVN 2019 Adhesion of two-dimensional titanium carbides (MXenes) and graphene to silicon Nat. Commun. 10 3014

    [364] van Engers C D, Cousens N E A, Babenko V, Britton J, Zappone B, Grobert N and Perkin S 2017 Direct measurement of the surface energy of graphene Nano Lett. 17 3815–21

    [365] Gao X Y, Yu X Y, Li B X, Fan S C and Li C 2017 Measuring graphene adhesion on silicon substrate by single and dual nanoparticle-loaded blister Adv. Mater. Interfaces 4 1601023

    [366] Sanchez D A, Dai Z H and Lu N S 2021 2D material bubbles: fabrication, characterization, and applications Trends Chem. 3 204–17

    [367] Zong Z, Chen C-L, Dokmeci M R and Wan K-T 2010 Direct measurement of graphene adhesion on silicon surface by intercalation of nanoparticles J. Appl. Phys. 107 026104

    [368] Wang W X, Ma X J, Dai Z H, Zhang S, Hou Y, Wang G R, Li Q Y, Zhang Z, Wei Y G and Liu L Q 2022 Mechanical behavior of blisters spontaneously formed by multilayer 2D materials Adv. Mater. Interfaces 9 2101939

    [369] Das S, Lahiri D, Agarwal A and Choi W 2014 Interfacial bonding characteristics between graphene and dielectric substrates Nanotechnology 25 045707

    [370] Xin H, Borduin R, Jiang W, Liechti K M and Li W 2017 Adhesion energy of as-grown graphene on copper foil with a blister test Carbon 123 243–9

    [371] Cao Z, Wang P, Gao W, Tao L, Suk J W, Ruoff R S, Akinwande D, Huang R and Liechti K M 2014 A blister test for interfacial adhesion of large-scale transferred graphene Carbon 69 390–400

    [372] Cao Z Y, Tao L, Akinwande D, Huang R and Liechti K M 2016 Mixed-mode traction-separation relations between graphene and copper by blister tests Int. J. Solids Struct. 84 147–59

    [373] Yoon T, ShinWC,KimTY, MunJH,KimT-SandChoBJ 2012 Direct measurement of adhesion energy of monolayer graphene as-grown on copper and its application to renewable transfer process Nano Lett. 12 1448–52

    [374] Na S R, Suk J W, Tao L, Akinwande D, Ruoff R S, Huang R and Liechti K M 2015 Selective mechanical transfer of graphene from seed copper foil using rate effects ACS Nano 9 1325–35

    [375] Torres J, Zhu Y S, Liu P, Lim S C and Yun M 2018 Adhesion energies of 2D graphene and MoS2 to silicon and metal substrates Phys. Status Solidi A 215 1700512

    [376] Na S R, Suk J W, Ruoff R S, Huang R and Liechti K M 2014 Ultra long-range interactions between large area graphene and silicon ACS Nano 8 11234–42

    [377] Boddeti N G, Koenig S P, Long R, Xiao J L, Bunch J S and Dunn M L 2013 Mechanics of adhered, pressurized graphene blisters J. Appl. Mech. 80 040909

    [378] Bampoulis P, Teernstra V J, Lohse D, Zandvliet H J W and Poelsema B 2016 Hydrophobic ice confined between graphene and MoS2 J. Phys. Chem. C 120 27079–84

    [379] Liu X-Z, Li Q Y, Egberts P and Carpick R W 2014 Nanoscale adhesive properties of graphene: the effect of sliding history Adv. Mater. Interfaces 1 1300053

    [380] LiBW, YinJ,LiuXF, Wu HR,LiJD,LiXMand Guo W L 2019 Probing van der Waals interactions at two-dimensional heterointerfaces Nat. Nanotechnol. 14 567–72

    [381] Shim J, Lui C H, Ko T Y, Yu Y-J, Kim P, Heinz T F and Ryu S 2012 Water-gated charge doping of graphene induced by mica substrates Nano Lett. 12 648–54

    [382] Li J T and .stling M 2013 Prevention of graphene restacking for performance boost of supercapacitors-a review Crystals 3 163–90

    [383] Komurasaki H, Tsukamoto T, Yamazaki K and Ogino T 2012 Layered structures of interfacial water and their effects on Raman spectra in graphene-on-sapphire systems J. Phys. Chem. C 116 10084–9

    [384] Deng S K, Gao E L, Xu Z P and Berry V 2017 Adhesion energy of MoS2 thin films on silicon-based substrates determined via the attributes of a single MoS2 wrinkle ACS Appl. Mater. Interfaces 9 7812–8

    [385] Soule D E and Nezbeda C W 1968 Direct basal-plane shear in single-crystal graphite J. Appl. Phys. 39 5122–39

    [386] Briscoe B J and Smith A C 1982 The interfacial shear strength of molybdenum disulfide and graphite films ASL E Trans. 25 349–54

    [387] Dienwiebel M, Verhoeven G S, Pradeep N, Frenken J W M, Heimberg J A and Zandbergen H W 2004 Superlubricity of graphite Phys. Rev. Lett. 92 126101

    [388] Donnet C, Martin J M, Le Mogne T and Belin M 1994 The origin of super-low friction coefficient of MoS2 coatings in various environments Tribol. Ser. 27 277–84

    [389] Grosseau-Poussard J L, Moine P and Brendle M 1997 Shear strength measurements of parallel MoSx thin films Thin Solid Films 307 163–8

    [390] Oviedo J P, Kc S, Lu N, Wang J C, Cho K, Wallace R M and Kim M J 2015 In situ TEM characterization of shear-stress-induced interlayer sliding in the cross section view of molybdenum disulfide ACS Nano 9 1543–51

    [391] Singer I L, Bolster R N, Wegand J, Fayeulle S and Stupp B C 1990 Hertzian stress contribution to low friction behavior of thin MoS2 coatings Appl. Phys. Lett. 57 995–7

    [392] Donnet C, Martin J M, Le Mogne T and Belin M 1996 Super-low friction of MoS2 coatings in various environments Tribol. Int. 29 123–8

    [393] Wang J-Y, Li Y, Zhan Z-Y, Li T, Zhen L and Xu C-Y 2016 Elastic properties of suspended black phosphorus nanosheets Appl. Phys. Lett. 108 013104

    [394] Ozbey D H, Kilic M E and Durgun E 2022 Two-dimensional Janus GePAs monolayer: a direct-band-gap semiconductor with high and anisotropic mobility for efficient photocatalytic water splitting Phys. Rev. Appl. 17 034043

    [395] Montes-García V and Samor`. P 2022 Janus 2D materials via asymmetric molecular functionalization Chem. Sci. 13 315–28

    [396] Zhang L, Yang Z, Gong T, Pan R K, Wang H D, Guo Z N, Zhang H and Fu X 2020 Recent advances in emerging Janus two-dimensional materials: from fundamental physics to device applications J. Mater. Chem. A 8 8813–30

    [397] Lee J-H, Loya P E, Lou J and Thomas E L 2014 Dynamic mechanical behavior of multilayer graphene via supersonic projectile penetration Science 346 1092–6

    [398] Motlag M, Hu Y W, Tong L, Huang X Y, Ye L and Cheng G J 2019 Laser-shock-induced nanoscale Kink-Bands in WSe2 2D crystals ACS Nano 13 10587–95

    [399] Lloyd D, Liu X H, Christopher J W, Cantley L, Wadehra A, Kim B L, Goldberg B B, Swan A K and Bunch J S 2016 Band gap engineering with ultralarge biaxial strains in suspended monolayer MoS2 Nano Lett. 16 5836–41

    [400] Gao C, Yang X Y, Jiang M, Chen L X, Chen Z W and Singh C V 2021 Synergistic vacancy defects and mechanical strain for the modulation of the mechanical, electronic and optical properties of monolayer tungsten disulfide Phys. Chem. Chem. Phys. 23 6298–308

    [401] Ong Z-Y, Cai Y Q, Zhang G and Zhang Y-W 2014 Strong thermal transport anisotropy and strain modulation in single-layer phosphorene J. Phys. Chem. C 118 25272–7

    [402] Deng S K, Sumant A V and Berry V 2018 Strain engineering in two-dimensional nanomaterials beyond graphene Nano Today 22 14–35

    Guorui Wang, Hongyu Hou, Yunfeng Yan, Ritesh Jagatramka, Amir Shirsalimian, Yafei Wang, Binzhao Li, Matthew Daly, and Changhong Cao. Recent advances in the mechanics of 2D materials[J]. International Journal of Extreme Manufacturing, 2023, 5(3): 32002
    Download Citation