[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Electric field effect in atomically thin carbon films Science 306 666–9
[2] Xia F N, Farmer D B, Lin Y-M and Avouris P 2010 Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature Nano Lett. 10 715–8
[3] Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Single-layer MoS2 transistors Nat. Nanotechnol. 6 147–50
[4] Zhu H Y, Wang Y, Xiao J, Liu M, Xiong S M, Wong Z J, Ye Z L, Ye Y, Yin X B and Zhang X 2015 Observation of piezoelectricity in free-standing monolayer MoS2 Nat. Nanotechnol. 10 151–5
[5] Wei X D, Mao L, Soler-Crespo R A, Paci J T, Huang J X, Nguyen S T and Espinosa H D 2015 Plasticity and ductility in graphene oxide through a mechanochemically induced damage tolerance mechanism Nat. Commun. 6 8029
[6] Soler-Crespo R A, Gao W, Xiao P H, Wei X D, Paci J T, Henkelman G and Espinosa H D 2016 Engineering the mechanical properties of monolayer graphene oxide at the atomic level J. Phys. Chem. Lett. 7 2702–7
[7] Cao C H, Daly M, Singh C V, Sun Y and Filleter T 2015 High strength measurement of monolayer graphene oxide Carbon 81 497–504
[8] Cao C H, Daly M, Chen B, Howe J Y, Singh C V, Filleter T and Sun Y 2015 Strengthening in graphene oxide nanosheets: bridging the gap between interplanar and intraplanar fracture Nano Lett. 15 6528–34
[9] Dikin D A, Stankovich S, Zimney E J, Piner R D, Dommett G H B, Evmenenko G, Nguyen S T and Ruoff R S 2007 Preparation and characterization of graphene oxide paper Nature 448 457–60
[10] Gao Y, Liu L-Q, Zu S-Z, Peng K, Zhou D, Han B-H and Zhang Z 2011 The effect of interlayer adhesion on the mechanical behaviors of macroscopic graphene oxide papers ACS Nano 5 2134–41
[11] Hacopian E F, Yang Y C, Ni B, Li Y L, Li X, Chen Q, Guo H, Tour J M, Gao H J and Lou J 2018 Toughening graphene by integrating carbon nanotubes ACS Nano 12 7901–10
[12] DaiZH,WangGR,LiuLQ,HouY, WeiYGandZhangZ 2016 Mechanical behavior and properties of hydrogen bonded graphene/polymer nano-interfaces Compos. Sci. Technol. 136 1–9
[13] Young R J, Kinloch I A, Gong L and Novoselov K S 2012 The mechanics of graphene nanocomposites: a review Compos. Sci. Technol. 72 1459–76
[14] Chen K et al 2022 Graphene oxide bulk material reinforced by heterophase platelets with multiscale interface crosslinking Nat. Mater. 21 1121–9
[15] Beese A M, An Z, Sarkar S, Nathamgari S S P, Espinosa H D and Nguyen S T 2014 Defect-tolerant nanocomposites through bio-inspired stiffness modulation Adv. Funct. Mater. 24 2883–91
[16] Soler-Crespo R A, Mao L, Wen J G, Nguyen H T, Zhang X, Wei X D, Huang J X, Nguyen S T and Espinosa H D 2019 Atomically thin polymer layer enhances toughness of graphene oxide monolayers Matter 1 369–88
[17] Wan S J, Li X, Wang Y L, Chen Y, Xie X, Yang R, Tomsia A P, Jiang L and Cheng Q F 2020 Strong sequentially bridged MXene sheets Proc. Natl Acad. Sci. USA 117 27154–61
[18] Carey M and Barsoum M W 2021 MXene polymer nanocomposites: a review Mater. Today Adv. 9 100120
[19] Lee C, Wei X D, Kysar J W and Hone J 2008 Measurement of the elastic properties and intrinsic strength of monolayer graphene Science 321 385–8
[20] Lee G-H et al 2013 High-strength chemical-vapor-deposited graphene and grain boundaries Science 340 1074–6
[21] Ruiz L, Xia W J, Meng Z X and Keten S 2015 A coarse-grained model for the mechanical behavior of multi-layer graphene Carbon 82 103–15
[22] Meng Z X, Soler-Crespo R A, Xia W J, Gao W, Ruiz L, Espinosa H D and Keten S 2017 A coarse-grained model for the mechanical behavior of graphene oxide Carbon 117 476–87
[23] Mortazavi B, Novikov I S, Podryabinkin E V, Roche S, Rabczuk T, Shapeev A V and Zhuang X Y 2020 Exploring phononic properties of two-dimensional materials using machine learning interatomic potentials Appl. Mater. Today 20 100685
[24] Mortazavi B, Podryabinkin E V, Novikov I S, Roche S, Rabczuk T, Zhuang X Y and Shapeev A V 2020 Efficient machine-learning based interatomic potentials for exploring thermal conductivity in two-dimensional materials J. Phys. Mater. 3 02LT02
[25] Mortazavi B, Rajabpour A, Zhuang X Y, Rabczuk T and Shapeev A V 2022 Exploring thermal expansion of carbon-based nanosheets by machine-learning interatomic potentials Carbon 186 501–8
[26] Mortazavi B, Silani M, Podryabinkin E V, Rabczuk T, Zhuang X Y and Shapeev A V 2021 First-principles multiscale modeling of mechanical properties in graphene/borophene heterostructures empowered by machine-learning interatomic potentials Adv. Mater. 33 2102807
[27] Daly M, Cao C H, Sun H, Sun Y, Filleter T and Singh C V 2016 Interfacial shear strength of multilayer graphene oxide films ACS Nano 10 1939–47
[28] Cao G X and Gao H J 2019 Mechanical properties characterization of two-dimensional materials via nanoindentation experiments Prog. Mater. Sci. 103 558–95
[29] Falin A et al 2017 Mechanical properties of atomically thin boron nitride and the role of interlayer interactions Nat. Commun. 8 15815
[30] KimSM et al 2015 Synthesis of large-area multilayer hexagonal boron nitride for high material performance Nat. Commun. 6 8662
[31] Wei X D and Kysar J W 2012 Experimental validation of multiscale modeling of indentation of suspended circular graphene membranes Int. J. Solids Struct. 49 3201–9
[32] Wei X D, Fragneaud B, Marianetti C A and Kysar J W 2009 Nonlinear elastic behavior of graphene: ab initio calculations to continuum description Phys. Rev. B 80 205407
[33] Cadelano E, Palla P L, Giordano S and Colombo L 2009 Nonlinear elasticity of monolayer graphene Phys. Rev. Lett. 102 235502
[34] HanY, ZhouJZ,WangHY, GaoLB,FengSZ,CaoK, Xu Z P and Lu Y 2021 Experimental nanomechanics of 2D materials for strain engineering Appl. Nanosci. 11 1075–91
[35] HanY, FengSZ,CaoK,WangYJ,GaoLB,XuZPand Lu Y 2020 Large elastic deformation and defect tolerance of hexagonal boron nitride monolayers Cell Rep. Phys. Sci. 1 100172
[36] Yang Y C et al 2017 Brittle fracture of 2D MoSe2 Adv. Mater. 29 1604201
[37] Jiang C Y, Markutsya S, Pikus Y and Tsukruk V V 2004 Freely suspended nanocomposite membranes as highly sensitive sensors Nat. Mat. 3 721–8
[38] Wei X D, Lee D, Shim S, Chen X and Kysar J W 2007 Plane-strain bulge test for nanocrystalline copper thin films Scr. Mater. 57 541–4
[39] O’Connell P A and McKenna G B 2005 Rheological measurements of the thermoviscoelastic response of ultrathin polymer films Science 307 1760–3
[40] Koenig S P, Boddeti N G, Dunn M L and Bunch J S 2011 Ultrastrong adhesion of graphene membranes Nat. Nanotechnol. 6 543–6
[41] Boddeti N G, Liu X H, Long R, Xiao J L, Bunch J S and Dunn M L 2013 Graphene blisters with switchable shapes controlled by pressure and adhesion Nano Lett. 13 6216–21
[42] Lloyd D, Liu X H, Boddeti N, Cantley L, Long R, Dunn M L and Bunch J S 2017 Adhesion, stiffness, and instability in atomically thin MoS2 bubbles Nano Lett. 17 5329–34
[43] Wang L D, Travis J J, Cavanagh A S, Liu X H, Koenig S P, Huang P Y, George S M and Bunch J S 2012 Ultrathin oxide films by atomic layer deposition on graphene Nano Lett. 12 3706–10
[44] KittAL,QiZA,RémiS,ParkHS,Swan AKand Goldberg B B 2013 How graphene slides: measurement and theory of strain-dependent frictional forces between graphene and SiO2 Nano Lett. 13 2605–10
[45] WangGR,DaiZH,WangYL,Tan PH,LiuLQ,Xu ZP, Wei Y G, Huang R and Zhang Z 2017 Measuring interlayer shear stress in bilayer graphene Phys. Rev. Lett. 119 036101
[46] WangGR,DaiZH,XiaoJK,FengSZ,WengCX,LiuLQ, Xu Z P, Huang R and Zhang Z 2019 Bending of multilayer van der Waals materials Phys. Rev. Lett. 123 116101
[47] Stafford C M, Harrison C, Beers K L, Karim A, Amis E J, Vanlandingham M R, Kim H-C, Volksen W, Miller R D and Simonyi E E 2004 A buckling-based metrology for measuring the elastic moduli of polymeric thin films Nat. Mater. 3 545–50
[48] Stafford C M, Vogt B D, Harrison C, Julthongpiput D and Huang R 2006 Elastic moduli of ultrathin amorphous polymer films Macromolecules 39 5095–9
[49] Igui.niz N, Frisenda R, Bratschitsch R and Castellanos-Gomez A 2019 Revisiting the buckling metrology method to determine the Young’s modulus of 2D materials Adv. Mater. 31 1807150
[50] Kim J H, Hyun C, Kim H, Dash J K, Ihm K and Lee G-H 2019 Thickness-insensitive properties of α-MoO3 nanosheets by weak interlayer coupling Nano Lett. 19 8868–76
[51] Siskins M, Lee M, Alijani F, van Blankenstein M R, Davidovikj D, van der Zant H S J and Steeneken P G 2019 Highly anisotropic mechanical and optical properties of 2D layered As2S3 membranes ACS Nano 13 10845–51
[52] Liu B H, Pavlou C, Wang Z Y, Cang Y, Galiotis C and Fytas G 2021 Determination of the elastic moduli of CVD graphene by probing graphene/polymer Bragg stacks 2D Mater. 8 035040
[53] Jiménez-Riobóo R J, Art′us L, Cuscó R, Taniguchi T, Cassabois G and Gil B 2018 In-and out-of-plane longitudinal acoustic-wave velocities and elastic moduli in h-BN from Brillouin scattering measurements Appl. Phys. Lett. 112 051905
[54] Graczykowski B, Sledzinska M, Placidi M, Saleta Reig D, Kasprzak M, Alzina F and Sotomayor Torres C M 2017 Elastic properties of few nanometers thick polycrystalline MoS2 membranes: a nondestructive study Nano Lett. 17 7647–51
[55] Babacic V, Reig D S, Varghese S, Vasileiadis T, Coy E, Tielrooij K-J and Graczykowski B 2021 Thickness-dependent elastic softening of few-layer free-standing MoSe2 Adv. Mater. 33 2008614
[56] Khestanova E, Guinea F, Fumagalli L, Geim A K and Grigorieva I V 2016 Universal shape and pressure inside bubbles appearing in van der Waals heterostructures Nat. Commun. 7 12587
[57] Di Giorgio C, Blundo E, Pettinari G, Felici M, Lu Y R, Cucolo A M, Polimeni A and Bobba F 2020 Nanoscale measurements of elastic properties and hydrostatic pressure in H2-bulged MoS2 membranes Adv. Mater. Interfaces 7 2001024
[58] An H J, Tan B H and Ohl C-D 2016 Distinguishing nanobubbles from nanodroplets with AFM: the influence of vertical and lateral imaging forces Langmuir 32 12710–5
[59] Tan BH,ZhangJ,JinJ,OoiCH,HeY, ZhouRW, Ostrikov K, Nguyen N-T and An H J 2020 Direct measurement of the contents, thickness, and internal pressure of molybdenum disulfide nanoblisters Nano Lett. 20 3478–84
[60] Zheng Z-Y et al 2020 Local probe of the interlayer coupling strength of few-layers SnSe by contact-resonance atomic force microscopy Front. Phys. 15 63505
[61] Gisbert V G and Garcia R 2021 Accurate wide-modulus-range nanomechanical mapping of ultrathin interfaces with bimodal atomic force microscopy ACS Nano 15 20574–81
[62] Di Giorgio C, Blundo E, Pettinari G, Felici M, Bobba F and Polimeni A 2022 Mechanical, elastic, and adhesive properties of two-dimensional materials: from straining techniques to state-of-the-art local probe measurements Adv. Mater. Interfaces 9 2102220
[63] Won K, Lee C, Jung J, Kwon S, Gebredingle Y, Lim J G, Kim M K, Jeong M S and Lee C 2022 Raman scattering measurement of suspended graphene under extreme strain induced by nanoindentation Adv. Mater. 34 2200946
[64] Li P F, Kang Z, Zhang Z, Liao Q L, Rao F, Lu Y and Zhang Y 2021 In situ microscopy techniques for characterizing the mechanical properties and deformation behavior of two-dimensional (2D) materials Mater. Today 51 247–72
[65] Wang R, Wang S F, Wu X Z and Liang X 2010 First-principles calculations on third-order elastic constants and internal relaxation for monolayer graphene Phys. Rev. B 405 3501–6
[66] Marianetti C A and Yevick H G 2010 Failure mechanisms of graphene under tension Phys. Rev. Lett. 105 245502
[67] Jiang J-W, Wang J-S and Li B W 2009 Young’s modulus of graphene: a molecular dynamics study Phys. Rev. B 80 113405
[68] Lu Q, Gao W and Huang R 2011 Atomistic simulation and continuum modeling of graphene nanoribbons under uniaxial tension Model. Simul. Mater. Sci. Eng. 19 054006
[69] Zhao H, Min K and Aluru N R 2009 Size and chirality dependent elastic properties of graphene nanoribbons under uniaxial tension Nano Lett. 9 3012–5
[70] Stuart S J, Tutein A B and Harrison J A 2000 A reactive potential for hydrocarbons with intermolecular interactions J. Chem. Phys. 112 6472–86
[71] Brenner D W, Shenderova O A, Harrison J A, Stuart S J, Ni B and Sinnott S B 2002 A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons J. Phys.: Condens. Matter 14 783–802
[72] Peng Q and De S 2013 Mechanical properties and instabilities of ordered graphene oxide C6O monolayers RSC Adv. 3 24337–44
[73] Liu L Z, Zhang J F, Zhao J J and Liu F 2012 Mechanical properties of graphene oxides Nanoscale 4 5910–6
[74] Sun H, Mukherjee S, Daly M, Krishnan A, Karigerasi M H and Singh C V 2016 New insights into the structure-nonlinear mechanical property relations for graphene allotropes Carbon 110 443–57
[75] Peng Q, Ji W and De S 2012 Mechanical properties of graphyne monolayers: a first-principles study Phys. Chem. Chem. Phys. 14 13385–91
[76] Puigdollers A R, Alonso G and Gamallo P 2016 First-principles study of structural, elastic and electronic properties of α-, β-and γ-graphyne Carbon 96 879–87
[77] Soni H R and Jha P K 2014 Vibrational and elastic properties of 2D carbon allotropes: a first principles study Solid State Commun. 189 58–62
[78] Peng Q, Ji W and De S 2012 Mechanical properties of the hexagonal boron nitride monolayer: ab initio study Comput. Mater. Sci. 56 11–17
[79] Mahdizadeh S J, Goharshadi E K and Akhlamadi G 2016 Thermo-mechanical properties of boron nitride nanoribbons: a molecular dynamics simulation study J. Mol. Graph. Model. 68 1–13
[80] Roman R E and Cranford S W 2014 Mechanical properties of silicene Comput. Mater. Sci. 82 50–55
[81] Wei Q and Peng X H 2014 Superior mechanical flexibility of phosphorene and few-layer black phosphorus Appl. Phys. Lett. 104 251915
[82] Cooper R C, Lee C, Marianetti C A, Wei X D, Hone J and Kysar J W 2013 Nonlinear elastic behavior of two-dimensional molybdenum disulfide Phys. Rev. B 87 035423
[83] Peng Q and De S 2013 Outstanding mechanical properties of monolayer MoS2 and its application in elastic energy storage Phys. Chem. Chem. Phys. 15 19427–37
[84] Ding W Y, Han D, Zhang J C and Wang X Y 2019 Mechanical responses of WSe2 monolayers: a molecular dynamics study Mater. Res. Express 6 085071
[85] Borysiuk V N, Mochalin V N and Gogotsi Y 2015 Molecular dynamic study of the mechanical properties of two-dimensional titanium carbides Tin+1Cn(MXenes) Nanotechnology 26 265705
[86] Hatam-Lee S M, Esfandiar A and Rajabpour A 2021 Mechanical behaviors of titanium nitride and carbide MXenes: a molecular dynamics study Appl. Surf. Sci. 566 150633
[87] Jhon Y I, Byun Y T, Lee J H and Jhon Y M 2020 Robust mechanical tunability of 2D transition metal carbides via surface termination engineering: molecular dynamics simulation Appl. Surf. Sci. 532 147380
[88] Jiang J-W and Park H S 2014 Mechanical properties of MoS2/graphene heterostructures Appl. Phys. Lett. 105 033108
[89] Qin H S, Pei Q-X, Liu Y L and Zhang Y-W 2019 The mechanical and thermal properties of MoS2-WSe2 lateral heterostructures Phys. Chem. Chem. Phys. 21 15845–53
[90] CaoCH et al 2017 Role of graphene in enhancing the mechanical properties of TiO2/graphene heterostructures Nanoscale 9 11678–84
[91] Lu Q, Arroyo M and Huang R 2009 Elastic bending modulus of monolayer graphene J. Phys. D: Appl. Phys. 42 102002
[92] Borysiuk V N, Mochalin V N and Gogotsi Y 2018 Bending rigidity of two-dimensional titanium carbide (MXene) nanoribbons: a molecular dynamics study Comput. Mater. Sci. 143 418–24
[93] Guo Y F, Qiu J P and Guo W L 2017 Tunable bending stiffness of MoSe2/WSe2 heterobilayers from flexural wrinkling Nanotechnology 28 195701
[94] Min K and Aluru N R 2011 Mechanical properties of graphene under shear deformation Appl. Phys. Lett. 98 013113
[95] Sorkin V and Zhang Y W 2018 Mechanical properties of pristine and defective carbon-phosphide monolayers: a density functional tight-binding study Nanotechnology 29 435707
[96] Jiang J-W and Park H S 2014 Negative Poisson’s ratio in single-layer black phosphorus Nat. Commun. 5 4727
[97] Jiang J-W, Chang T, Guo X M and Park H S 2016 Intrinsic negative Poisson’s ratio for single-layer graphene Nano Lett. 16 5286–90
[98] Sun H, Agrawal P and Singh C V 2021 A first-principles study of the relationship between modulus and ideal strength of single-layer, transition metal dichalcogenides Mater. Adv. 2 6631–40
[99] Khoei A R and Khorrami M S 2016 Mechanical properties of graphene oxide: a molecular dynamics study Fuller. Nanotub. Carbon Nanostruct. 24 594–603
[100] Lindsay L and Broido D A 2010 Optimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene Phys. Rev. B 81 205441
[101] van Duin A C T, Dasgupta S, Lorant F and Goddard W A 2001 ReaxFF: a reactive force field for hydrocarbons J. Phys. Chem. A 105 9396–409
[102] Chenoweth K, van Duin A C T and Goddard W A 2008 ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation J. Phys. Chem. A 112 1040–53
[103] Plummer G, Thomas S, Zaeem M A and Tucker G J 2022 Bond-order potential for the surface-terminated titanium carbide MXene monolayers Tin+1CnTx (n=1, 2, or 3; T=-O or -F) Phys. Rev. B 106 054105
[104] Liang T, Phillpot S R and Sinnott S B 2009 Parametrization of a reactive many-body potential for Mo–S systems Phys. Rev. B 79 245110
[105] Jiang J-W 2015 Parametrization of Stillinger–Weber potential based on valence force field model: application to single-layer MoS2 and black phosphorus Nanotechnology 26 315706
[106] Kandemir A, Yapicioglu H, Kinaci A, .a.g.n T and Sevik C 2016 Thermal transport properties of MoS2 and MoSe2 monolayers Nanotechnology 27 055703
[107] Wen M J, Shirodkar S N, Plechác P, Kaxiras E, Elliott R S and Tadmor E B 2017 A force-matching Stillinger-Weber potential for MoS2: parameterization and fisher information theory based sensitivity analysis J. Appl. Phys. 122 244301
[108] Jiang J-W, Park H S and Rabczuk T 2013 Molecular dynamics simulations of single-layer molybdenum disulphide (MoS2): Stillinger-Weber parametrization, mechanical properties, and thermal conductivity J. Appl. Phys. 114 064307
[109] Los J H, Kroes J M H, Albe K, Gordillo R M, Katsnelson M I and Fasolino A 2017 Extended tersoff potential for boron nitride: energetics and elastic properties of pristine and defective h-BN Phys. Rev. B 96 184108
[110] Chan H, Sasikumar K, Srinivasan S, Cherukara M, Narayanan B and Sankaranarayanan S K R S 2019 Machine learning a bond order potential model to study thermal transport in WSe2 nanostructures Nanoscale 11 10381–92
[111] Zhang X, Nguyen H, Paci J T, Sankaranarayanan S K R S, Mendoza-Cortes J L and Espinosa H D 2021 Multi-objective parametrization of interatomic potentials for large deformation pathways and fracture of two-dimensional materials npj Comput. Mater. 7 113
[112] Lipatov A et al 2020 Electrical and elastic properties of individual single-layer Nb4C3Tx MXene flakes Adv. Electron. Mater. 6 1901382
[113] CaoK,FengSZ,HanY, GaoLB,HueLT, XuZP and Lu Y 2020 Elastic straining of free-standing monolayer graphene Nat. Commun. 11 284
[114] Ostadhossein A, Rahnamoun A, Wang Y X, Zhao P, Zhang S L, Crespi V H and Van Duin A C T 2017 ReaxFF reactive force-field study of molybdenum disulfide (MoS2) J. Phys. Chem. Lett. 8 631–40
[115] HanY, GaoLB,ZhouJZ,HouY, JiaYW, CaoK,DuanK and Lu Y 2022 Deep elastic strain engineering of 2D materials and their twisted bilayers ACS Appl. Mater. Interfaces 14 8655–63
[116] Blundo E, Cappelluti E, Felici M, Pettinari G and Polimeni A 2021 Strain-tuning of the electronic, optical, and vibrational properties of two-dimensional crystals Appl. Phys. Rev. 8 021318
[117] Zhang H 2015 Ultrathin two-dimensional nanomaterials ACS Nano 9 9451–69
[118] Bertolazzi S, Brivio J and Kis A 2011 Stretching and breaking of ultrathin MoS2 ACS Nano 5 9703–9
[119] Castellanos-Gomez A, Poot M, Steele G A, van der Zant H S J, Agra.t N and Rubio-Bollinger G 2012 Elastic properties of freely suspended MoS2 nanosheets Adv. Mater. 24 772–5
[120] Zhou D, Feng G, Khosla H, Retterer S T and Li B 2022 Mechanical characterization of stacked single-crystal of polyethylene and monolayer MoSe2 Adv. Funct. Mater. 32 2201612
[121] Falin A et al 2021 Mechanical properties of atomically thin tungsten dichalcogenides: WS2, WSe2, and WTe2 ACS Nano 15 2600–10
[122] Liu K et al 2014 Elastic properties of chemical-vapor-deposited monolayer MoS2, WS2, and their bilayer heterostructures Nano Lett. 14 5097–103
[123] Zhang R, Koutsos V and Cheung R 2016 Elastic properties of suspended multilayer WSe2 Appl. Phys. Lett. 108 042104
[124] Jahn Y M and Ya’akobovitz A 2021 Outstanding stretchability and thickness-dependent mechanical properties of 2D HfS2, HfSe2, and hafnium oxide Nanoscale 13 18458–66
[125] WangGR,ZhangZP, WangYL,GaoEL,JiaXZ,DaiZH, Weng C X, Liu L Q, Zhang Y F and Zhang Z 2021 Out-of-plane deformations determined mechanics of vanadium disulfide (VS2) sheets ACS Appl. Mater. Interfaces 13 3040–50
[126] Lipatov A, Lu H D, Alhabeb M, Anasori B, Gruverman A, Gogotsi Y and Sinitskii A 2018 Elastic properties of 2D Ti3C2Tx MXene monolayers and bilayers Sci. Adv. 4 eaat0491
[127] Wang H, Sandoz-Rosado E J, Hon Tsang S, Lin J J, Zhu M M, Mallick G, Liu Z and Teo E H T 2019 Elastic properties of 2D ultrathin tungsten nitride crystals grown by chemical vapor deposition Adv. Funct. Mater. 29 1902663
[128] Harbola V, Crossley S, Hong S S, Lu D, Birkh.lzer Y A, Hikita Y and Hwang H Y 2021 Strain gradient elasticity in SrTiO3 membranes: bending versus stretching Nano Lett. 21 2470–5
[129] Tu Q, Spanopoulos I, Yasaei P, Stoumpos C C, Kanatzidis M G, Shekhawat G S and Dravid V P 2018 Stretching and breaking of ultrathin 2D hybrid organic-inorganic perovskites ACS Nano 12 10347–54
[130] Chitara B and Ya’akobovitz A 2018 Elastic properties and breaking strengths of GaS, GaSe and GaTe nanosheets Nanoscale 10 13022–7
[131] Cantos-Prieto F, Falin A, Alliati M, Qian D, Zhang R, Tao T, Barnett M R, Santos E J G, Li L H and Navarro-Moratalla E 2021 Layer-dependent mechanical properties and enhanced plasticity in the van der Waals chromium trihalide magnets Nano Lett. 21 3379–85
[132] Yan H, Vajner C, Kuhlman M, Guo L L, Li L, Araujo P T and Wang H-T 2016 Elastic behavior of Bi2Se3 2D nanosheets grown by van der Waals epitaxy Appl. Phys. Lett. 109 032103
[133] Guo L L, Yan H M, Moore Q, Buettner M, Song J H, Li L, Araujo P T and Wang H-T 2015 Elastic properties of van der Waals epitaxy grown bismuth telluride 2D nanosheets Nanoscale 7 11915–21
[134] LiYH et al 2019 Elastic properties and intrinsic strength of two-dimensional InSe flakes Nanotechnology 30 335703
[135] Siskins M et al 2022 Nanomechanical probing and strain tuning of the curie temperature in suspended Cr2Ge2Te6-based heterostructures npj 2D Mater. Appl. 6 41
[136] Hao Q, Zhao C Q, Sun B, Lu C, Liu J, Liu M J, Wan L-J and Wang D 2018 Confined synthesis of two-dimensional covalent organic framework thin films within superspreading water layer J. Am. Chem. Soc. 140 12152–8
[137] Zeng Z X, Flyagina I S and Tan J-C 2020 Nanomechanical behavior and interfacial deformation beyond the elastic limit in 2D metal–organic framework nanosheets Nanoscale Adv. 2 5181–91
[138] ChenWJ,KhanU,FengSM,DingBF, XuXMand Liu B L 2020 High-fidelity transfer of 2D Bi2O2Se and its mechanical properties Adv. Funct. Mater. 30 2004960
[139] Sun Y F et al 2019 Elastic properties and fracture behaviors of biaxially deformed, polymorphic MoTe2 Nano Lett. 19 761–9
[140] HuZH,Wu ZT, HanC,HeJ,NiZHandChenW2018 Two-dimensional transition metal dichalcogenides: interface and defect engineering Chem. Soc. Rev. 47 3100–28
[141] Gogotsi Y and Huang Q 2021 MXenes: two-dimensional building blocks for future materials and devices ACS Nano 15 5775–80
[142] Alhabeb M, Maleski K, Anasori B, Lelyukh P, Clark L, Sin S and Gogotsi Y 2017 Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene) Chem. Mater. 29 7633–44
[143] WengCX,WangGR,DaiZH,PeiYM,LiuLQand Zhang Z 2019 Buckled AgNW/MXene hybrid hierarchical sponges for high-performance electromagnetic interference shielding Nanoscale 11 22804–12
[144] WengCX,XingTL,JinH,WangGR,DaiZH,PeiMY, Liu L Q and Zhang Z 2020 Mechanically robust ANF/MXene composite films with tunable electromagnetic interference shielding performance Composites A 135 105927
[145] Li Y X, Wei C J, Huang S H, Ghasemi A, Gao W, Wu C L and Mochalin V N 2021 In situ tensile testing of nanometer-thick two-dimensional transition-metal carbide films: implications for MXenes acting as nanoscale reinforcement agents ACS Appl. Nano Mater. 4 5058–67
[146] Ding S-Y and Wang W 2013 Covalent organic frameworks (COFs): from design to applications Chem. Soc. Rev. 42 548–68
[147] Feng X, Ding X S and Jiang D L 2012 Covalent organic frameworks Chem. Soc. Rev. 41 6010–22
[148] Fang Q Y, Sui C, Wang C, Zhai T S, Zhang J, Liang J, Guo H, Sandoz-Rosado E and Lou J 2021 Strong and flaw-insensitive two-dimensional covalent organic frameworks Matter 4 1017–28
[149] Zhou H C J and Kitagawa S 2014 Metal–organic frameworks (MOFs) Chem. Soc. Rev. 43 5415–8
[150] Xian S K, Lin Y H, Wang H and Li J 2021 Calcium-based metal–organic frameworks and their potential applications Small 17 2005165
[151] Zhou H-C, Long J R and Yaghi O M 2012 Introduction to metal-organic frameworks Chem. Rev. 112 673–4
[152] Meek S T, Greathouse J A and Allendorf M D 2011 Metal-organic frameworks: a rapidly growing class of versatile nanoporous materials Adv. Mater. 23 249–67
[153] Hermosa C, Horrocks B R, Martínez J I, Liscio F, Gómez-Herrero J and Zamora F 2015 Mechanical and optical properties of ultralarge flakes of a metal–organic framework with molecular thickness Chem. Sci. 6 2553–8
[154] Tsai H et al 2016 High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells Nature 536 312–6
[155] Snaith H J 2013 Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells J. Phys. Chem. Lett. 4 3623–30
[156] Saparov B and Mitzi D B 2016 Organic-inorganic perovskites: structural versatility for functional materials design Chem. Rev. 116 4558–96
[157] Kim D, Vasileiadou E S, Spanopoulos I, Kanatzidis M G and Tu Q 2021 In-plane mechanical properties of two-dimensional hybrid organic-inorganic perovskite nanosheets: structure-property relationships ACS Appl. Mater. Interfaces 13 31642–9
[158] Reyes-Martinez M A, Tan P, Kakekhani A, Banerjee S, Zhumekenov A A, Peng W, Bakr O M, Rappe A M and Loo Y-L 2020 Unraveling the elastic properties of (quasi) two-dimensional hybrid perovskites: a joint experimental and theoretical study ACS Appl. Mater. Interfaces 12 17881–92
[159] Yang Y C et al 2021 Intrinsic toughening and stable crack propagation in hexagonal boron nitride Nature 594 57–61
[160] Song L et al 2010 Large scale growth and characterization of atomic hexagonal boron nitride layers Nano Lett. 10 3209–15
[161] Banhart F, Kotakoski J and Krasheninnikov A V 2011 Structural defects in graphene ACS Nano 5 26–41
[162] Dettori R, Cadelano E and Colombo L 2012 Elastic fields and moduli in defected graphene J. Phys.: Condens. Matter 24 104020
[163] Ruiz-Vargas C S, Zhuang H L, Huang P Y, van der Zande A M, Garg S, McEuen P L, Muller D A, Hennig R G and Park J 2011 Softened elastic response and unzipping in chemical vapor deposition graphene membranes Nano Lett. 11 2259–63
[164] Suk J W, Hao Y F, Liechti K M and Ruoff R S 2020 Impact of grain boundaries on the elastic behavior of transferred polycrystalline graphene Chem. Mater. 32 6078–84
[165] XuJ,Yuan GW, ZhuQ,WangJW, TangSandGaoLB 2018 Enhancing the strength of graphene by a denser grain boundary ACS Nano 12 4529–35
[166] Zandiatashbar A, Lee G-H, An S J, Lee S, Mathew N, Terrones M, Hayashi T, Picu C R, Hone J and Koratkar N 2014 Effect of defects on the intrinsic strength and stiffness of graphene Nat. Commun. 5 3186
[167] López-Polín G, Gómez-Navarro C, Parente V, Guinea F, Katsnelson M I, Pérez-Murano F and Gómez-Herrero J 2015 Increasing the elastic modulus of graphene by controlled defect creation Nat. Phys. 11 26–31
[168] Thiemann F L, Rowe P, Zen A, Müller E A and Michaelides A 2021 Defect-dependent corrugation in graphene Nano Lett. 21 8143–50
[169] Song Z G and Xu Z P 2016 Geometrical effect ‘stiffens’ graphene membrane at finite vacancy concentrations Extreme Mech. Lett. 6 82–87
[170] Fasolino A, Los J H and Katsnelson M I 2007 Intrinsic ripples in graphene Nat. Mater. 6 858–61
[171] Xu P, Neek-Amal M, Barber S D, Schoelz J K, Ackerman M L, Thibado P M, Sadeghi A and Peeters F M 2014 Unusual ultra-low-frequency fluctuations in freestanding graphene Nat. Commun. 5 3720
[172] Los J H, Fasolino A and Katsnelson M I 2017 Mechanics of thermally fluctuating membranes Npj 2D Mater. Appl. 1 9
[173] Lyublinskaya A A, Babkin S S and Burmistrov I S 2020 Effect of anomalous elasticity on bubbles in van der Waals heterostructures Phys. Rev. E 101 033005
[174] Gao W and Huang R 2014 Thermomechanics of monolayer graphene: rippling, thermal expansion and elasticity J. Mech. Phys. Solids 66 42–58
[175] Wang P, Gao W and Huang R 2016 Entropic effects of thermal rippling on van der Waals interactions between monolayer graphene and a rigid substrate J. Appl. Phys. 119 074305
[176] Ahmadpoor F, Wang P, Huang R and Sharma P 2017 Thermal fluctuations and effective bending stiffness of elastic thin sheets and graphene: a nonlinear analysis J. Mech. Phys. Solids 107 294–319
[177] Ahmadpoor F and Sharma P 2017 A perspective on the statistical mechanics of 2D materials Extreme Mech. Lett. 14 38–43
[178] Chen Y, Ouyang W G, Zhou K, Qin H S and Liu Y L 2022 Finite temperature mechanics of multilayer 2D materials Extreme Mech. Lett. 52 101612
[179] Nicholl R J T, Conley H J, Lavrik N V, Vlassiouk I, Puzyrev Y S, Sreenivas V P, Pantelides S T and Bolotin K I 2015 The effect of intrinsic crumpling on the mechanics of free-standing graphene Nat. Commun. 6 8789
[180] Nicholl R J T, Lavrik N V, Vlassiouk I, Srijanto B R and Bolotin K I 2017 Hidden area and mechanical nonlinearities in freestanding graphene Phys. Rev. Lett. 118 266101
[181] López-Polín G, Jaafar M, Guinea F, Roldán R, Gómez-Navarro C and Gómez-Herrero J 2017 The influence of strain on the elastic constants of graphene Carbon 124 42–48
[182] Lopez-Polin G, Gomez-Navarro C and Gomez-Herrero J 2022 The effect of rippling on the mechanical properties of graphene Nano Mater. Sci. 4 18–26
[183] Storch I R, de Alba R, Adiga V P, Abhilash T S, Barton R A, Craighead H G, Parpia J M and Mceuen P L 2018 Young’s modulus and thermal expansion of tensioned graphene membranes Phys. Rev. B 98 085408
[184] de Alba R, Abhilash T S, Hui A, Storch I R, Craighead H G and Parpia J M 2018 Temperature-dependence of stress and elasticity in wet-transferred graphene membranes J. Appl. Phys. 123 095109
[185] Liu Z, Zhang S-M, Yang J-R, Liu J Z, Yang Y-L and Zheng Q-S 2012 Interlayer shear strength of single crystalline graphite Acta Mech. Sin. 28 978–82
[186] Song Y M, Qu C Y, Ma M and Zheng Q S 2020 Structural superlubricity based on crystalline materials Small 16 1903018
[187] Serles P et al 2022 High performance space lubrication of MoS2 with tantalum Adv. Funct. Mater. 32 2110429
[188] Wei X D, Meng Z X, Ruiz L, Xia W J, Lee C, Kysar J W, Hone J C, Keten S and Espinosa H D 2016 Recoverable slippage mechanism in multilayer graphene leads to repeatable energy dissipation ACS Nano 10 1820–8
[189] Ferrari G A et al 2018 Apparent softening of wet graphene membranes on a microfluidic platform ACS Nano 12 4312–20
[190] Huang P, Guo D, Xie G X and Li J 2017 Softened mechanical properties of graphene induced by electric field Nano Lett. 17 6280–6
[191] Reynolds W N and Montet G 1970 Physical properties of graphite Phys. Today 23 71
[192] Zeng Z X and Tan J-C 2017 AFM nanoindentation to quantify mechanical properties of nano-and micron-sized crystals of a metal-organic framework material ACS Appl. Mater. Interfaces 9 39839–54
[193] Bundschuh S, Kraft O, Arslan H K, Gliemann H, Weidler P G and W.ll C 2012 Mechanical properties of metal-organic frameworks: an indentation study on epitaxial thin films Appl. Phys. Lett. 101 101910
[194] Tu Q, Spanopoulos I, Hao S Q, Wolverton C, Kanatzidis M G, Shekhawat G S and Dravid V P 2018 Out-of-plane mechanical properties of 2D hybrid organic-inorganic perovskites by nanoindentation ACS Appl. Mater. Interfaces 10 22167–73
[195] Gao Y et al 2015 Elastic coupling between layers in two-dimensional materials Nat. Mater. 14 714–20
[196] Wang Q H et al 2012 Understanding and controlling the substrate effect on graphene electron-transfer chemistry via reactivity imprint lithography Nat. Chem. 4 724–32
[197] Zhang X, Han W P, Wu J B, Milana S, Lu Y, Li Q Q, Ferrari A C and Tan P H 2013 Raman spectroscopy of shear and layer breathing modes in multilayer MoS2 Phys. Rev. B 87 115413
[198] Stenger I, Schué L, Boukhicha M, Berini B, Pla.ais B, Loiseau A and Barjon J 2017 Low frequency Raman spectroscopy of few-atomic-layer thick hBN crystals 2D Mater. 4 031003
[199] Tan P H et al 2012 The shear mode of multilayer graphene Nat. Mater. 11 294–300
[200] Wang G R et al 2017 Interlayer coupling behaviors of boron doped multilayer graphene J. Phys. Chem. C 121 26034–43
[201] Wu JB,LinML,CongX,LiuHNandTan PH2018 Raman spectroscopy of graphene-based materials and its applications in related devices Chem. Soc. Rev. 47 1822–73
[202] Zhao Y Y et al 2013 Interlayer breathing and shear modes in few-trilayer MoS2 and WSe2 Nano Lett. 13 1007–15
[203] Wang H, Feng M, Zhang X, Tan P-H and Wang Y F 2015 In-phase family and self-similarity of interlayer vibrational frequencies in van der Waals layered materials J. Phys. Chem. C 119 6906–11
[204] Come J, Xie Y, Naguib M, Jesse S, Kalinin S V, Gogotsi Y, Kent P R C and Balke N 2016 Nanoscale elastic changes in 2D Ti3C2Tx (MXene) pseudocapacitive electrodes Adv. Energy Mater. 6 1502290
[205] Cao C H, Mukherjee S, Howe J Y, Perovic D D, Sun Y, Singh C V and Filleter T 2018 Nonlinear fracture toughness measurement and crack propagation resistance of functionalized graphene multilayers Sci. Adv. 4 eaao7202
[206] Zhang P et al 2014 Fracture toughness of graphene Nat. Commun. 5 3782
[207] Zhang Z L et al 2019 Crack propagation and fracture toughness of graphene probed by Raman spectroscopy ACS Nano 13 10327–32
[208] Kim D B, Lee J W and Cho Y S 2021 Anisotropic in situ strain-engineered halide perovskites for high mechanical flexibility Adv. Funct. Mater. 31 2007131
[209] Griffith A A 1921 VI. The phenomena of rupture and flow in solids Phil. Trans. R. Soc. A 221 163–98
[210] Firestein K L et al 2020 Young’s modulus and tensile strength of Ti3C2 MXene nanosheets as revealed by in situ TEM probing, AFM nanomechanical mapping, and theoretical calculations Nano Lett. 20 5900–8
[211] YinHQ,QiHJ,Fan FF, ZhuT, WangBLandWeiYJ 2015 Griffith criterion for brittle fracture in graphene Nano Lett. 15 1918–24
[212] FengSZ,CaoK,GaoY, HanY, LiuZL,LuYandXuZP 2022 Experimentally measuring weak fracture toughness anisotropy in graphene Commun. Mater. 3 28
[213] Wei X L, Xiao S, Li F X, Tang D-M, Chen Q, Bando Y and Golberg D 2015 Comparative fracture toughness of multilayer graphenes and boronitrenes Nano Lett. 15 689–94
[214] Zhao X, Mao B Y, Liu M F, Cao J Y, Haigh S J, Papageorgiou D G, Li Z L and Young R J 2022 Controlling and monitoring crack propagation in monolayer graphene single crystals Adv. Funct. Mater. 32 2202373
[215] Na S R, Wang X H, Piner R D, Huang R, Willson C G and Liechti K M 2016 Cracking of polycrystalline graphene on copper under tension ACS Nano 10 9616–25
[216] Xia Z C and Hutchinson J W 2000 Crack patterns in thin films J. Mech. Phys. Solids 48 1107–31
[217] Chen M et al 2020 Controlled fragmentation of single-atom-thick polycrystalline graphene Matter 2 666–79
[218] Zhang T, Li X Y and Gao H J 2015 Fracture of graphene: a review Int. J. Fract. 196 1–31
[219] Zhan H, Tan X F, Xie G X and Guo D 2021 Reduced fracture strength of 2D materials induced by interlayer friction Small 17 2005996
[220] Li P F, Jiang C C, Xu S, Zhuang Y, Gao L B, Hu A, WangH T and Lu Y 2017 In situ nanomechanical characterization of multi-layer MoS2 membranes: from intraplanar to interplanar fracture Nanoscale 9 9119–28
[221] Jang B, Kim B, Kim J-H, Lee H-J, Sumigawa T and Kitamura T 2017 Asynchronous cracking with dissimilar paths in multilayer graphene Nanoscale 9 17325–33
[222] Jung G S, Wang S S, Qin Z, Martin-Martinez F J, Warner J H and Buehler M J 2018 Interlocking friction governs the mechanical fracture of bilayer MoS2 ACS Nano 12 3600–8
[223] Lin Q-Y, Zeng Y-H, Liu D M, Jing G Y, Liao Z-M and Yu D P 2014 Step-by-step fracture of two-layer stacked graphene membranes ACS Nano 8 10246–51
[224] Dai Z H et al 2019 Mechanical responses of boron-doped monolayer graphene Carbon 147 594–601
[225] Susarla S, Manimunda P, Jaques Y M, Hachtel J A, Idrobo J C, Asif S A S, Galv.aoD S,TiwaryC S and Ajayan P M 2019 Strain-induced structural deformation study of 2D MoxW(1-x) S2 Adv. Mater. Interfaces 6 1801262
[226] Apte A et al 2018 Structural phase transformation in strained monolayer MoWSe2 alloy ACS Nano 12 3468–76
[227] WeiYJ,Wu JT, YinHQ,ShiXH,YangRGand Dresselhaus M 2012 The nature of strength enhancement and weakening by pentagon-heptagon defects in graphene Nat. Mater. 11 759–63
[228] Rasool H I, Ophus C, Klug W S, Zettl A and Gimzewski J K 2013 Measurement of the intrinsic strength of crystalline and polycrystalline graphene Nat. Commun. 4 2811
[229] López-Polín G, Gómez-Herrero J and Gómez-Navarro C 2015 Confining crack propagation in defective graphene Nano Lett. 15 2050–4
[230] Manzanares-Negro Y, López-Polín G, Fujisawa K, Zhang T Y, Zhang F, Kahn E, Perea-López N, Terrones M, Gómez-Herrero J and Gómez-Navarro C 2021 Confined crack propagation in MoS2 monolayers by creating atomic vacancies ACS Nano 15 1210–6
[231] Xu L Q, Wei N and Zheng Y P 2013 Mechanical properties of highly defective graphene: from brittle rupture to ductile fracture Nanotechnology 24 505703
[232] Carpenter C, Maroudas D and Ramasubramaniam A 2013 Mechanical properties of irradiated single-layer graphene Appl. Phys. Lett. 103 013102
[233] Wang S S, Qin Z, Jung G S, Martin-Martinez F J, Zhang K, Buehler M J and Warner J H 2016 Atomically sharp crack tips in monolayer MoS2 and their enhanced toughness by vacancy defects ACS Nano 10 9831–9
[234] Daly M, Reeve M and Singh C V 2015 Effects of topological point reconstructions on the fracture strength and deformation mechanisms of graphene Comput. Mater. Sci. 97 172–80
[235] Daly M and Singh C V 2014 A kinematic study of energy barriers for crack formation in graphene tilt boundaries J. Appl. Phys. 115 223513
[236] Xiao J R, Staniszewski J and Gillespie J W 2010 Tensile behaviors of graphene sheets and carbon nanotubes with multiple Stone-Wales defects Mater. Sci. Eng. A 527 715–23
[237] Grantab R, Shenoy V B and Ruoff R S 2010 Anomalous strength characteristics of tilt grain boundaries in graphene Science 330 946–8
[238] Fox A, Ray U and Li T 2019 Strength of graphene grain boundaries under arbitrary in-plane tension Carbon 142 388–400
[239] Zhang T, Li X Y, Kadkhodaei S and Gao H Q 2012 Flaw insensitive fracture in nanocrystalline graphene Nano Lett. 12 4605–10
[240] Mukherjee S, Alicandri R and Singh C V 2020 Strength of graphene with curvilinear grain boundaries Carbon 158 808–17
[241] Zhao H and Aluru N R 2010 Temperature and strain-rate dependent fracture strength of graphene J. Appl. Phys. 108 064321
[242] Thomas S, Ajith K M and Valsakumar M C 2017 Empirical potential influence and effect of temperature on the mechanical properties of pristine and defective hexagonal boron nitride Mater. Res. Express 4 065005
[243] Sagar T C and Chinthapenta V 2020 Effect of substitutional and vacancy defects on the electrical and mechanical properties of 2D-hexagonal boron nitride J. Mol. Model. 26 192
[244] Ahmed T, Procak A, Hao T Y and Hossain Z M 2019 Strong anisotropy in strength and toughness in defective hexagonal boron nitride Phys. Rev. B 99 134105
[245] Gao C, Yang X Y, Jiang M, Chen L X, Chen Z W and Singh C V 2021 Defect evolution behaviors from single sulfur point vacancies to line vacancies in monolayer molybdenum disulfide Phys. Chem. Chem. Phys. 23 19525–36
[246] Gao J F, Cheng Y, Tian T, Hu X L, Zeng K Y, Zhang G and Zhang Y-W 2017 Structure, stability, and kinetics of vacancy defects in monolayer PtSe2: a first-principles study ACS Omega 2 8640–8
[247] Li Y, Chen P J, Zhang C, Peng J, Gao F and Liu H 2019 Molecular dynamics simulation on the buckling of single-layer MoS2 sheet with defects under uniaxial compression Comput. Mater. Sci. 162 116–23
[248] Cai Y Q, Chen S, Gao J F, Zhang G and Zhang Y-W 2019 Evolution of intrinsic vacancies and prolonged lifetimes of vacancy clusters in black phosphorene Nanoscale 11 20987–95
[249] Ghasemi A and Gao W 2020 Atomistic mechanism of stress modulated phase transition in monolayer MoTe2 Extreme Mech. Lett. 40 100946
[250] Ghasemi A and Gao W 2020 A method to predict energy barriers in stress modulated solid–solid phase transitions J. Mech. Phys. Solids 137 103857
[251] Wang W D, Li L L, Yang C G, Soler-Crespo R A, Meng Z X, Li M L, Zhang X, Keten S and Espinosa H D 2017 Plasticity resulted from phase transformation for monolayer molybdenum disulfide film during nanoindentation simulations Nanotechnology 28 164005
[252] Sorkin V, Cai Y Q, Srolovitz D J and Zhang Y W 2018 Mechanical twinning in phosphorene Extreme Mech. Lett. 19 15–19
[253] Sandoz-Rosado E, Beaudet T D, Balu R and Wetzel E D 2016 Designing molecular structure to achieve ductile fracture behavior in a stiff and strong 2D polymer, ‘graphylene’ Nanoscale 8 10947–55
[254] Najafi F, Wang G R, Mukherjee S, Cui T, Filleter T and Singh C V 2020 Toughening of graphene-based polymer nanocomposites via tuning chemical functionalization Compos. Sci. Technol. 194 108140
[255] Zhang X, Nguyen H, Daly M, Nguyen S T and Espinosa H D 2019 Nanoscale toughening of ultrathin graphene oxide-polymer composites: mechanochemical insights into hydrogen-bonding/van der Waals interactions, polymer chain alignment, and steric parameters Nanoscale 11 12305–16
[256] Fajri A, Prabowo A R, Muhayat N, Smaradhana D F and Bahatmaka A 2021 Fatigue analysis of engineering structures: state of development and achievement Proc. Struct. Integr. 33 19–26
[257] Kim S J, Choi K, Lee B, Kim Y and Hong B H 2015 Materials for flexible, stretchable electronics: graphene and 2D materials Annu. Rev. Mater. Res. 45 63–84
[258] Song Z G, Wang Y L and Xu Z P 2015 Mechanical responses of the bio-nano interface: a molecular dynamics study of graphene-coated lipid membrane Theor. Appl. Mech. Lett. 5 231–5
[259] Li X D and Bhushan B 2003 Fatigue studies of nanoscale structures for MEMS/NEMS applications using nanoindentation techniques Surf. Coat. Technol. 163–164 521–6
[260] Jiang C C, Hu D Y and Lu Y 2016 Digital micromirror device (DMD)-based high-cycle torsional fatigue testing micromachine for 1D nanomaterials Micromachines 7 49
[261] Larsen K P, Rasmussen A A, Ravnkilde J T, Ginnerup M and Hansen O 2003 MEMS device for bending test: measurements of fatigue and creep of electroplated nickel Sens. Actuators A 103 156–64
[262] LiPF et al 2014 In situ transmission electron microscopy investigation on fatigue behavior of single ZnO wires under high-cycle strain Nano Lett. 14 480–5
[263] Bai Y X et al 2020 Super-durable ultralong carbon nanotubes Science 369 1104–6
[264] Hosseinian E and Pierron O N 2013 Quantitative in situ TEM tensile fatigue testing on nanocrystalline metallic ultrathin films Nanoscale 5 12532–41
[265] Lu Y, Ganesan Y and Lou J 2010 A multi-step method for in situ mechanical characterization of 1D nanostructures using a novel micromechanical device Exp. Mech. 50 47–54
[266] Zhang H, Jiang C and Lu Y 2017 Low-cycle fatigue testing of Ni nanowires based on a micro-mechanical device Exp. Mech. 57 495–500
[267] Zhang J Y, Zhang X, Liu G, Wang R H, Zhang G J and Sun J 2011 Length scale dependent yield strength and fatigue behavior of nanocrystalline Cu thin films Mate. Sci. Eng. A 528 7774–80
[268] Cui T, Mukherjee S, Sudeep P M, Colas G, Najafi F, Tam J, Ajayan P M, Singh C V, Sun Y and Filleter T 2020 Fatigue of graphene Nat. Mater. 19 405–11
[269] Cui T, Yip K, Hassan A, Wang G R, Liu X J, Sun Y and Filleter T 2020 Graphene fatigue through van der Waals interactions Sci. Adv. 6 eabb1335
[270] Najafi F, Wang G R, Cui T, Anand A, Mukherjee S, Filleter T, Sain M and Singh C V 2021 Fatigue resistance of atomically thin graphene oxide Carbon 183 780–8
[271] Amirmaleki M, Cui T, Zhao Y, Tam J, Goel A, Sun Y, Sun X L and Filleter T 2021 Fracture and fatigue of Al2O3-graphene nanolayers Nano Lett. 21 437–44
[272] Cui T et al 2022 Mechanical reliability of monolayer MoS2 and WSe2 Matter 5 2975–89
[273] Filleter T, McChesney J L, Bostwick A, Rotenberg E, Emtsev K V, Seyller T, Horn K and Bennewitz R 2009 Friction and dissipation in epitaxial graphene films Phys. Rev. Lett. 102 086102
[274] Lee C, Li Q Y, Kalb W, Liu X-Z, Berger H, Carpick R W and Hone J 2010 Frictional characteristics of atomically thin sheets Science 328 76–80
[275] Serles P, Hamidinejad M, Demingos P G, Ma L, Barri N, Taylor H, Singh C V, Park C B and Filleter T 2022 Friction of Ti3C2Tx MXenes Nano Lett. 22 3356–63
[276] Tan S C, Wang K P, Zeng Q D and Liu Y H 2022 Insight into the nanotribological mechanism of two-dimensional covalent organic frameworks ACS Appl. Mater. Interfaces 14 40173–81
[277] Vazirisereshk M R, Hasz K, Zhao M-Q, Johnson A T C, Carpick R W and Martini A 2020 Nanoscale friction behavior of transition-metal dichalcogenides: role of the chalcogenide ACS Nano 14 16013–21
[278] CaiS,Tao Y, ZhaoWW, HuangSY, SunCD,AnXH, Zhang Y, Wei Z Y, Ni Z H and Chen Y F 2022 Nanoscale friction behavior of monolayer MoxW1.xS2 alloy Tribol. Int. 166 107363
[279] Yadav S, Arif T, Wang G R, Sodhi R N S, Cheng Y H, Filleter T and Singh C V 2021 Interfacial interactions and tribological behavior of metal-oxide/2D-material contacts Tribol. Lett. 69 91
[280] Serles P et al 2021 Friction of magnetene, a non-van der Waals 2D material Sci. Adv. 7 eabk2041
[281] Zhang S, Ma T B, Erdemir A and Li Q Y 2019 Tribology of two-dimensional materials: from mechanisms to modulating strategies Mater. Today 26 67–86
[282] Rejhon M, Lavini F, Khosravi A, Shestopalov M, Kunc J, Tosatti E and Riedo E 2022 Relation between interfacial shear and friction force in 2D materials Nat. Nanotechnol. 17 1280–7
[283] Zhang D L, Li Z B, Klausen L H, Li Q and Dong M D 2022 Friction behaviors of two-dimensional materials at the nanoscale Mater. Today Phys. 27 100771
[284] Dai Z H, Liu L Q and Zhang Z 2019 Strain engineering of 2D materials: issues and opportunities at the interface Adv. Mater. 31 1805417
[285] Zhang S, Hou Y, Li S Z, Liu L Q, Zhang Z, Feng X-Q and Li Q Y 2019 Tuning friction to a superlubric state via in-plane straining Proc. Natl Acad. Sci. USA 116 24452–6
[286] Xu C C, Zhang S, Du H Z, Xue T, Kang Y L, Zhang Y, Zhao P and Li Q Y 2022 Revisiting frictional characteristics of graphene: effect of in-plane straining ACS Appl. Mater. Interfaces 14 41571–6
[287] Xu M Y, Zhang D L, Wang Y, Zhang Y G, Li Q and Dong M D 2022 Nanoscale friction of strained molybdenum disulfide induced by nanoblisters Appl. Phys. Lett. 120 151601
[288] Meng Y G, Xu J, Jin Z M, Prakash B and Hu Y Z 2020 A review of recent advances in tribology Friction 8 221–300
[289] Lang H J, Peng Y T, Shao G W, Zou K and Tao G M 2019 Dual control of the nanofriction of graphene J. Mater. Chem. C 7 6041–51
[290] Lang H J, Peng Y T, Cao X A and Zou K 2020 Atomic-scale friction characteristics of graphene under conductive AFM with applied voltages ACS Appl. Mater. Interfaces 12 25503–11
[291] ShiB,GanXH,LangHJ,ZouK,WangLF, SunJH, Lu Y Y and Peng Y T 2021 Ultra-low friction and patterning on atomically thin MoS2 via electronic tight-binding Nanoscale 13 16860–71
[292] SongAS,ShiRY, LuHL,WangXY, HuYZ,GaoH-J, Luo J B and Ma T B 2022 Fluctuation of interfacial electronic properties induces friction tuning under an electric field Nano Lett. 22 1889–96
[293] Zhang Y, Dong M, Gueye B, Ni Z H, Wang Y J and Chen Y F 2015 Temperature effects on the friction characteristics of graphene Appl. Phys. Lett. 107 011601
[294] Greiner C, Felts J R, Dai Z T, King W P and Carpick R W 2010 Local nanoscale heating modulates single-asperity friction Nano Lett. 10 4640–5
[295] Gong P and Egberts P 2021 Influence of heating on the measured friction behavior of graphene evaluated under ultra-high vacuum conditions Appl. Phys. Lett. 119 063102
[296] Paolicelli G, Tripathi M, Corradini V, Candini A and Valeri S 2015 Nanoscale frictional behavior of graphene on SiO2 and Ni(111) substrates Nanotechnology 26 055703
[297] Arif T, Colas G and Filleter T 2018 Effect of humidity and water intercalation on the tribological behavior of graphene and graphene oxide ACS Appl. Mater. Interfaces 10 22537–44
[298] Arif T, Yadav S, Colas G, Singh C V and Filleter T 2019 Understanding the independent and interdependent role of water and oxidation on the tribology of ultrathin molybdenum disulfide (MoS2) Adv. Mater. Interfaces 6 1901246
[299] Arif T, Wang G R, Sodhi R N S, Colas G and Filleter T 2021 Role of chemical vs. physical interfacial interaction and adsorbed water on the tribology of ultrathin 2D-material/steel interfaces Tribol. Int. 163 107194
[300] Vilhena J G, Pimentel C, Pedraz P, Luo F, Serena P A, Pina C M, Gnecco E and Pérez R 2016 Atomic-scale sliding friction on graphene in water ACS Nano 10 4288–93
[301] Liu S-W et al 2017 Robust microscale superlubricity under high contact pressure enabled by graphene-coated microsphere Nat. Commun. 8 14029
[302] Tian J S, Yin X, Li J J, Qi W, Huang P, Chen X C and Luo J B 2020 Tribo-induced interfacial material transfer of an atomic force microscopy probe assisting superlubricity in a WS2/Graphene heterojunction ACS Appl. Mater. Interfaces 12 4031–40
[303] Carpick R W, Ogletree D F and Salmeron M 1999 A general equation for fitting contact area and friction vs load measurements J. Colloid Interface Sci. 211 395–400
[304] Zheng Q S, Jiang B, Liu S P, Weng Y X, Lu L, Xue Q K, Zhu J, Jiang Q, Wang S and Peng L M 2008 Self-retracting motion of graphite microflakes Phys. Rev. Lett. 100 067205
[305] Liu Z, Yang J R, Grey F, Liu J Z, Liu Y L, Wang Y B, Yang Y L, Cheng Y and Zheng Q S 2012 Observation of microscale superlubricity in graphite Phys. Rev. Lett. 108 205503
[306] Wang K Q, Qu C Y, Wang J, Quan B G and Zheng Q S 2020 Characterization of a microscale superlubric graphite interface Phys. Rev. Lett. 125 026101
[307] Li H, Wang J H, Gao S, Chen Q, Peng L M, Liu K H and Wei X L 2017 Superlubricity between MoS2 monolayers Adv. Mater. 29 1701474
[308] Liao M Z et al 2022 UItra-low friction and edge-pinning effect in large-lattice-mismatch van der Waals heterostructures Nat. Mater. 21 47–53
[309] Liu Y M, Song A S, Xu Z, Zong R L, Zhang J, Yang W Y, Wang R, Hu Y Z, Luo J B and Ma T B 2018 Interlayer friction and superlubricity in single-crystalline contact enabled by two-dimensional flake-wrapped atomic force microscope tips ACS Nano 12 7638–46
[310] Conley H, Lavrik N V, Prasai D and Bolotin K I 2011 Graphene bimetallic-like cantilevers: probing graphene/substrate interactions Nano Lett. 11 4748–52
[311] Wang G R, Liu L Q, Dai Z H, Liu Q, Miao H and Zhang Z 2015 Biaxial compressive behavior of embedded monolayer graphene inside flexible poly (methyl methacrylate) matrix Carbon 86 69–77
[312] Wang G R, Liu L Q and Zhang Z 2021 Interface mechanics in carbon nanomaterials-based nanocomposites Composites A 141 106212
[313] Sun Y F et al 2022 Determining the interlayer shearing in twisted bilayer MoS2 by nanoindentation Nat. Commun. 13 3898
[314] Androulidakis C, Koukaras E N, Paterakis G, Trakakis G and Galiotis C 2020 Tunable macroscale structural superlubricity in two-layer graphene via strain engineering Nat. Commun. 11 1595
[315] DouWB,XuCC,GuoJG,DuHZ,QiuW, XueT, Kang Y L and Zhang Q 2018 Interfacial mechanical properties of double-layer graphene with consideration of the effect of stacking mode ACS Appl. Mater. Interfaces 10 44941–9
[316] DuHZ,KangYL,XuCC,XueT, QiuWandXieHM 2022 Measurement and characterization of interfacial mechanical properties of graphene/MoS2 heterostructure by Raman and photoluminescence (PL) spectroscopy Opt. Lasers Eng. 149 106825
[317] Dai Z H, Lu N S, Liechti K M and Huang R 2020 Mechanics at the interfaces of 2D materials: challenges and opportunities Curr. Opin. Solid State Mater. Sci. 24 100837
[318] Wang G R 2017 Study on Characterization and Modification of Graphene-Based Interfacial Mechanical Behavior (Singapore: Springer)
[319] Wang G R and Liu L Q 2022 Interfacial mechanics of polymer nanocomposites Reference Module in Materials Science and Materials Engineering (Edinburgh: Elsevier) (https://doi.org/10.1016/B978-0-12-822944-6.00075-X)
[320] Liechti K M 2019 Characterizing the interfacial behavior of 2D materials: a review Exp. Mech. 59 395–412
[321] Gong L, Kinloch I A, Young R J, Riaz I, Jalil R and Novoselov K S 2010 Interfacial stress transfer in a graphene monolayer nanocomposite Adv. Mater. 22 2694–7
[322] Jiang T, Huang R and Zhu Y 2014 Interfacial sliding and buckling of monolayer graphene on a stretchable substrate Adv. Funct. Mater. 24 396–402
[323] Papageorgiou D G, Li Z L, Liu M F, Kinloch I A and Young R J 2020 Mechanisms of mechanical reinforcement by graphene and carbon nanotubes in polymer nanocomposites Nanoscale 12 2228–67
[324] Liu M F, Zhuo Y L, Sarycheva A, Gogotsi Y, Bissett M A, Young R J and Kinloch I A 2022 Deformation of and interfacial stress transfer in Ti3C2 MXene-polymer composites ACS Appl. Mater. Interfaces 14 10681–90
[325] Xu C C, Xue T, Qiu W and Kang Y L 2016 Size effect of the interfacial mechanical behavior of graphene on a stretchable substrate ACS Appl. Mater. Interfaces 8 27099–106
[326] Huang M Y, Yan H G, Chen C Y, Song D H, Heinz T F and Hone J 2009 Phonon softening and crystallographic orientation of strained graphene studied by Raman spectroscopy Proc. Natl Acad. Sci. USA 106 7304–8
[327] Mohiuddin T M G et al 2009 Uniaxial strain in graphene by Raman spectroscopy:G peak splitting, Grüneisen parameters, and sample orientation Phys. Rev. B 79 205433
[328] Gong L, Young R J, Kinloch I A, Riaz I, Jalil R and Novoselov K S 2012 Optimizing the reinforcement of polymer-based nanocomposites by graphene ACS Nano 6 2086–95
[329] Wang W M, Li Z L, Marsden A J, Bissett M A and Young R J 2021 Interlayer and interfacial stress transfer in hBN nanosheets 2D Mater. 8 035058
[330] Li Z L, Young R J, Papageorgiou D G, Kinloch I A, Zhao X, Yang C and Hao S J 2019 Interfacial stress transfer in strain engineered wrinkled and folded graphene 2D Mater. 6 045026
[331] WangGR,GaoEL,DaiZH,LiuLQ,XuZPandZhangZ 2017 Degradation and recovery of graphene/polymer interfaces under cyclic mechanical loading Compos. Sci. Technol. 149 220–7
[332] Androulidakis C, Koukaras E N, Rahova J, Sampathkumar K, Parthenios J, Papagelis K, Frank O and Galiotis C 2017 Wrinkled few-layer graphene as highly efficient load bearer ACS Appl. Mater. Interfaces 9 26593–601
[333] XuCC,Yao QZ,DuHZ,HongCY, XueT, KangYLand Li Q Y 2021 Abnormal Raman characteristics of graphene originating from contact interface inhomogeneity ACS Appl. Mater. Interfaces 13 22040–6
[334] DuHZ,XueT, XuCC,KangYLandDouWB2018 Improvement of mechanical properties of graphene/substrate interface via regulation of initial strain through cyclic loading Opt. Lasers Eng. 110 356–63
[335] Yu J, Kim S, Ertekin E and van der Zande A M 2020 Material-dependent evolution of mechanical folding instabilities in two-dimensional atomic membranes ACS Appl. Mater. Interfaces 12 10801–8
[336] Compton O C, Cranford S W, Putz K W, An Z, Brinson L C, Buehler M J and Nguyen S T 2012 Tuning the mechanical properties of graphene oxide paper and its associated polymer nanocomposites by controlling cooperative intersheet hydrogen bonding ACS Nano 6 2008–19
[337] Soler-Crespo R A, Gao W, Mao L, Nguyen H T, Roenbeck M R, Paci J T, Huang J X, Nguyen S T and Espinosa H D 2018 The role of water in mediating interfacial adhesion and shear strength in graphene oxide ACS Nano 12 6089–99
[338] Choi J Y, Zhang X, Nguyen H T, Roenbeck M R, Mao L, Soler-Crespo R, Nguyen S T and Espinosa H D 2021 Atomistic mechanisms of adhesion and shear strength in graphene oxide-polymer interfaces J. Mech. Phys. Solids 156 104578
[339] Monastyreckis G, Mishnaevsky L, Hatter C B, Aniskevich A, Gogotsi Y and Zeleniakiene D 2020 Micromechanical modeling of MXene-polymer composites Carbon 162 402–9
[340] Sliozberg Y, Andzelm J, Hatter C B, Anasori B, Gogotsi Y and Hall A 2020 Interface binding and mechanical properties of MXene-epoxy nanocomposites Compos. Sci. Technol. 192 108124
[341] Hou Y, Dai Z H, Zhang S, Feng S Z, Wang G R, Liu L Q, Xu Z P, Li Q Y and Zhang Z 2021 Elastocapillary cleaning of twisted bilayer graphene interfaces Nat. Commun. 12 5069
[342] Gupta S, Yu H and Yakobson B I 2022 Designing 1D correlated-electron states by non-Euclidean topography of 2D monolayers Nat. Commun. 13 3103
[343] Cao C H, Wu T Y and Sun Y 2021 A review of assembly techniques for fabricating twisted bilayer graphene J. Micromech. Microeng. 31 114004
[344] Brennan C J, Nguyen J, Yu E T and Lu N S 2015 Interface adhesion between 2D materials and elastomers measured by buckle delaminations Adv. Mater. Interfaces 2 1500176
[345] Gowthami T, Tamilselvi G, Jacob G and Raina G 2015 The role of ambient ice-like water adlayers formed at the interfaces of graphene on hydrophobic and hydrophilic substrates probed using scanning probe microscopy Phys. Chem. Chem. Phys. 17 13964–72
[346] Sanchez D A, Dai Z H, Wang P, Cantu-Chavez A, Brennan C J, Huang R and Lu N S 2018 Mechanics of spontaneously formed nanoblisters trapped by transferred 2D crystals Proc. Natl Acad. Sci. USA 115 7884–9
[347] Temmen M, Ochedowski O, Schleberger M, Reichling M and Bollmann T R J 2014 Hydration layers trapped between graphene and a hydrophilic substrate New J. Phys. 16 053039
[348] Kretinin A V et al 2014 Electronic properties of graphene encapsulated with different two-dimensional atomic crystals Nano Lett. 14 3270–6
[349] LiYX,HuangSH,WeiCJ,ZhouD,LiB,Wu CLand Mochalin V N 2021 Adhesion between MXenes and other 2D materials ACS Appl. Mater. Interfaces 13 4682–91
[350] Li P, You Z and Cui T H 2014 Adhesion energy of few layer graphene characterized by atomic force microscope Sens. Actuators A 217 56–61
[351] Rokni H and Lu W 2020 Direct measurements of interfacial adhesion in 2D materials and van der Waals heterostructures in ambient air Nat. Commun. 11 5607
[352] Liu Z, Liu J Z, Cheng Y, Li Z H, Wang L and Zheng Q S 2012 Interlayer binding energy of graphite: a mesoscopic determination from deformation Phys. Rev. B 85 205418
[353] Wang J, Sorescu D C, Jeon S, Belianinov A, Kalinin S V, Baddorf A P and Maksymovych P 2016 Atomic intercalation to measure adhesion of graphene on graphite Nat. Commun. 7 13263
[354] Scharfenberg S, Rocklin D Z, Chialvo C, Weaver R L, Goldbart P M and Mason N 2011 Probing the mechanical properties of graphene using a corrugated elastic substrate Appl. Phys. Lett. 98 091908
[355] Jiang T and Zhu Y 2015 Measuring graphene adhesion using atomic force microscopy with a microsphere tip Nanoscale 7 10760–6
[356] Na S R, Kim Y, Lee C, Liechti K M and Suk J W 2017 Adhesion and self-healing between monolayer molybdenum disulfide and silicon oxide Sci. Rep. 7 14740
[357] Das S, Lahiri D, Lee D-Y, Agarwal A and Choi W 2013 Measurements of the adhesion energy of graphene to metallic substrates Carbon 59 121–9
[358] Gong P, Li Q Y, Liu X-Z, Carpick R W and Egberts P 2017 Adhesion mechanics between nanoscale silicon oxide tips and few-layer graphene Tribol. Lett. 65 61
[359] Megra Y T and Suk J W 2019 Adhesion properties of 2D materials J. Phys. D: Appl. Phys. 52 364002
[360] Akinwande D et al 2017 A review on mechanics and mechanical properties of 2D materials—graphene and beyond Extreme Mech. Lett. 13 42–77
[361] FangZ,DaiZH,WangBJ,TianZZ,Yu CL,ChenQ and Wei X L 2023 Pull-to-peel of two-dimensional materials for the simultaneous determination of elasticity and adhesion Nano Lett. 23 742–9
[362] Suk J W, Na S R, Stromberg R J, Stauffer D, Lee J, Ruoff R S and Liechti K M 2016 Probing the adhesion interactions of graphene on silicon oxide by nanoindentation Carbon 103 63–72
[363] LiYX,HuangSH,WeiCJ,Wu CLandMochalinVN 2019 Adhesion of two-dimensional titanium carbides (MXenes) and graphene to silicon Nat. Commun. 10 3014
[364] van Engers C D, Cousens N E A, Babenko V, Britton J, Zappone B, Grobert N and Perkin S 2017 Direct measurement of the surface energy of graphene Nano Lett. 17 3815–21
[365] Gao X Y, Yu X Y, Li B X, Fan S C and Li C 2017 Measuring graphene adhesion on silicon substrate by single and dual nanoparticle-loaded blister Adv. Mater. Interfaces 4 1601023
[366] Sanchez D A, Dai Z H and Lu N S 2021 2D material bubbles: fabrication, characterization, and applications Trends Chem. 3 204–17
[367] Zong Z, Chen C-L, Dokmeci M R and Wan K-T 2010 Direct measurement of graphene adhesion on silicon surface by intercalation of nanoparticles J. Appl. Phys. 107 026104
[368] Wang W X, Ma X J, Dai Z H, Zhang S, Hou Y, Wang G R, Li Q Y, Zhang Z, Wei Y G and Liu L Q 2022 Mechanical behavior of blisters spontaneously formed by multilayer 2D materials Adv. Mater. Interfaces 9 2101939
[369] Das S, Lahiri D, Agarwal A and Choi W 2014 Interfacial bonding characteristics between graphene and dielectric substrates Nanotechnology 25 045707
[370] Xin H, Borduin R, Jiang W, Liechti K M and Li W 2017 Adhesion energy of as-grown graphene on copper foil with a blister test Carbon 123 243–9
[371] Cao Z, Wang P, Gao W, Tao L, Suk J W, Ruoff R S, Akinwande D, Huang R and Liechti K M 2014 A blister test for interfacial adhesion of large-scale transferred graphene Carbon 69 390–400
[372] Cao Z Y, Tao L, Akinwande D, Huang R and Liechti K M 2016 Mixed-mode traction-separation relations between graphene and copper by blister tests Int. J. Solids Struct. 84 147–59
[373] Yoon T, ShinWC,KimTY, MunJH,KimT-SandChoBJ 2012 Direct measurement of adhesion energy of monolayer graphene as-grown on copper and its application to renewable transfer process Nano Lett. 12 1448–52
[374] Na S R, Suk J W, Tao L, Akinwande D, Ruoff R S, Huang R and Liechti K M 2015 Selective mechanical transfer of graphene from seed copper foil using rate effects ACS Nano 9 1325–35
[375] Torres J, Zhu Y S, Liu P, Lim S C and Yun M 2018 Adhesion energies of 2D graphene and MoS2 to silicon and metal substrates Phys. Status Solidi A 215 1700512
[376] Na S R, Suk J W, Ruoff R S, Huang R and Liechti K M 2014 Ultra long-range interactions between large area graphene and silicon ACS Nano 8 11234–42
[377] Boddeti N G, Koenig S P, Long R, Xiao J L, Bunch J S and Dunn M L 2013 Mechanics of adhered, pressurized graphene blisters J. Appl. Mech. 80 040909
[378] Bampoulis P, Teernstra V J, Lohse D, Zandvliet H J W and Poelsema B 2016 Hydrophobic ice confined between graphene and MoS2 J. Phys. Chem. C 120 27079–84
[379] Liu X-Z, Li Q Y, Egberts P and Carpick R W 2014 Nanoscale adhesive properties of graphene: the effect of sliding history Adv. Mater. Interfaces 1 1300053
[380] LiBW, YinJ,LiuXF, Wu HR,LiJD,LiXMand Guo W L 2019 Probing van der Waals interactions at two-dimensional heterointerfaces Nat. Nanotechnol. 14 567–72
[381] Shim J, Lui C H, Ko T Y, Yu Y-J, Kim P, Heinz T F and Ryu S 2012 Water-gated charge doping of graphene induced by mica substrates Nano Lett. 12 648–54
[382] Li J T and .stling M 2013 Prevention of graphene restacking for performance boost of supercapacitors-a review Crystals 3 163–90
[383] Komurasaki H, Tsukamoto T, Yamazaki K and Ogino T 2012 Layered structures of interfacial water and their effects on Raman spectra in graphene-on-sapphire systems J. Phys. Chem. C 116 10084–9
[384] Deng S K, Gao E L, Xu Z P and Berry V 2017 Adhesion energy of MoS2 thin films on silicon-based substrates determined via the attributes of a single MoS2 wrinkle ACS Appl. Mater. Interfaces 9 7812–8
[385] Soule D E and Nezbeda C W 1968 Direct basal-plane shear in single-crystal graphite J. Appl. Phys. 39 5122–39
[386] Briscoe B J and Smith A C 1982 The interfacial shear strength of molybdenum disulfide and graphite films ASL E Trans. 25 349–54
[387] Dienwiebel M, Verhoeven G S, Pradeep N, Frenken J W M, Heimberg J A and Zandbergen H W 2004 Superlubricity of graphite Phys. Rev. Lett. 92 126101
[388] Donnet C, Martin J M, Le Mogne T and Belin M 1994 The origin of super-low friction coefficient of MoS2 coatings in various environments Tribol. Ser. 27 277–84
[389] Grosseau-Poussard J L, Moine P and Brendle M 1997 Shear strength measurements of parallel MoSx thin films Thin Solid Films 307 163–8
[390] Oviedo J P, Kc S, Lu N, Wang J C, Cho K, Wallace R M and Kim M J 2015 In situ TEM characterization of shear-stress-induced interlayer sliding in the cross section view of molybdenum disulfide ACS Nano 9 1543–51
[391] Singer I L, Bolster R N, Wegand J, Fayeulle S and Stupp B C 1990 Hertzian stress contribution to low friction behavior of thin MoS2 coatings Appl. Phys. Lett. 57 995–7
[392] Donnet C, Martin J M, Le Mogne T and Belin M 1996 Super-low friction of MoS2 coatings in various environments Tribol. Int. 29 123–8
[393] Wang J-Y, Li Y, Zhan Z-Y, Li T, Zhen L and Xu C-Y 2016 Elastic properties of suspended black phosphorus nanosheets Appl. Phys. Lett. 108 013104
[394] Ozbey D H, Kilic M E and Durgun E 2022 Two-dimensional Janus GePAs monolayer: a direct-band-gap semiconductor with high and anisotropic mobility for efficient photocatalytic water splitting Phys. Rev. Appl. 17 034043
[395] Montes-García V and Samor`. P 2022 Janus 2D materials via asymmetric molecular functionalization Chem. Sci. 13 315–28
[396] Zhang L, Yang Z, Gong T, Pan R K, Wang H D, Guo Z N, Zhang H and Fu X 2020 Recent advances in emerging Janus two-dimensional materials: from fundamental physics to device applications J. Mater. Chem. A 8 8813–30
[397] Lee J-H, Loya P E, Lou J and Thomas E L 2014 Dynamic mechanical behavior of multilayer graphene via supersonic projectile penetration Science 346 1092–6
[398] Motlag M, Hu Y W, Tong L, Huang X Y, Ye L and Cheng G J 2019 Laser-shock-induced nanoscale Kink-Bands in WSe2 2D crystals ACS Nano 13 10587–95
[399] Lloyd D, Liu X H, Christopher J W, Cantley L, Wadehra A, Kim B L, Goldberg B B, Swan A K and Bunch J S 2016 Band gap engineering with ultralarge biaxial strains in suspended monolayer MoS2 Nano Lett. 16 5836–41
[400] Gao C, Yang X Y, Jiang M, Chen L X, Chen Z W and Singh C V 2021 Synergistic vacancy defects and mechanical strain for the modulation of the mechanical, electronic and optical properties of monolayer tungsten disulfide Phys. Chem. Chem. Phys. 23 6298–308
[401] Ong Z-Y, Cai Y Q, Zhang G and Zhang Y-W 2014 Strong thermal transport anisotropy and strain modulation in single-layer phosphorene J. Phys. Chem. C 118 25272–7
[402] Deng S K, Sumant A V and Berry V 2018 Strain engineering in two-dimensional nanomaterials beyond graphene Nano Today 22 14–35