[1] E M Purcell. Spontaneous emission probabilities at radio frequencies [J]. Phys Rev, 1946, 69: 681.
[2] Y Takahashi,Y Inui, M Chihara, et al.. A micrometre-scale Raman silicon laser with a microwatt threshold [J]. Nature, 2013, 498(7455): 470-474.
[3] S Haroche, D Kleppner. Cavity quantum electrodynamics [J]. Phys Tod, 1989, 42(1): 24-30.
[4] J M Gerard, B Sermage, B Gayral, et al.. Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity [J]. Phys Rev Lett, 1998, 81(5): 1110-1113.
[5] H J Kimble. Strong interaction of single atoms and photons in cavity QED [J]. Physica Scripta, 1998, 1998(T76): 127-137.
[6] P Goy, J M Raimond, M Gross, et al.. Observation of cavity enhanced single-atom spontaneous emission [J]. Phys Rev Lett, 1983, 50(24): 1903-1906.
[7] R G Hulet, E S Hilfer, D Kleppner, et al.. Inhibited spontaneous emission by a Rydberg atom [J]. Phys Rev Lett, 1985, 55(20): 2137-2140.
[8] J McKeever, A Boca, A D Boozer, et al.. Experimental realization of a one-atom laser in the regime of strong coupling [J]. Nature, 2003, 425(6955): 268-271.
[9] K M Birnbaum, A Boca, R Miller, et al.. Photon blockade in an optical cavity with one trapped atom [J]. Nature, 2005, 436(7047): 87-90.
[10] T Yoshie, A Seherer, J Hendriekson, et al.. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity [J]. Nature, 2003, 432(7014): 200-203.
[11] M Brune, F S Kaler, A Maali, et al.. Quantum Rabi oscillation: A direct test of field quantization in a cavity [J]. Phys Rev Lett, 1996, 76(11): 1800-1803.
[12] F Vollmer, S Arnold, D Braun, et al.. Multiplexed DNA quantification by spectroscopic shift of two microsphere cavities [J]. Biophysical Journal, 2003, 85(3): 1974-1979.
[13] V R Dantham, S Holler, V Kolchenko, et al.. Taking whispering-gallery-mode single virus detection and sizing to the limit [J]. Appl Phys Lett, 2011, 101(4): 043704.
[14] W L Jin, X Yi, Y W Hu, et al.. Temperature-insensitive detection of low-concentration nanoparticles using a functionalized high-Q microcavity [J]. Appl Opt, 2013, 52(2): 155-161.
[15] I P Kaminow, T L San. Optical Fiber Telecommunications IV: Components [M]. San Diego: Academic Press, 2002.
[16] S B Alexander, R S Bondurant, D Byme, et al.. A precompetitive consortium on wide-band all-optical networks [J]. J Lightwave Technol, 1993, 11(5): 714-735.
[17] Y Hibino, T Maruno, K Okamoto. Recent progress on large-scale PLC technologies with advanced functions [J]. NTT Review, 2001, 13(5): 4-9.
[18] A S Kewitsch, G A Rakuljic, P A Willems, et al.. All-fiber zero-insertion-loss add-drop filter for wavelength-division multiplexing [J]. Opt Lett, 1998, 23(2): 106-108.
[19] C R Doerr, L W Stulz, M Cappuzzo, et al.. 40-wavelength add-drop filter [J]. IEEE Phot Technol Lett, 1999, 11(11): 1437-1439.
[20] K Djordjev, S J Choi, P D Dapkus. Microdisk tunable resonant filters and switches [J]. IEEE Phot Technol Lett, 2002, 14(6): 828-830.
[21] P Rabiei, W H Steier, C Zhang, et al.. Polymer micro-ring filters and modulators [J]. J Lightwave Technol, 2002, 20(11): 1968-1975.
[22] B E Little, H A Haus, J S Foresi, et al.. Wavelength switching and routing using absorption and resonance [J]. IEEE Phot Technol Lett, 1998, 10(6): 816-818.
[23] K Djordjev, S J Choi, P D Dapkus. Vertically coupled InP microdisk switching devices with electro absorptive active regions [J]. IEEE Phot Technol Lett, 2002, 14(8): 1115-1117.
[24] A Yariv. Critical coupling and its control in optical waveguide-ring resonator systems [J]. IEEE Phot Technol Lett, 2002, 14(4): 483-485.
[25] R A Soref, B E Little. Proposed N-wavelength M-fiber WDM crossconnect switch using active microring resonators [J]. IEEE Phot Technol Lett, 1998, 10(8): 1121-1123.
[26] S T Chu, B E Little, W Pan, et al.. An eight-channel add-drop filter using vertically coupled micro-ring resonators over a cross grid [J]. IEEE Phot Technol Lett, 1999, 11(6): 691-693.
[27] M Cai, G Hunziker, K Vahala, et al.. Fiber-optic add-drop device based on a silica microsphere-whispering gallery mode system [J]. IEEE Phot Technol Lett, 1999, 11(6): 686-687.
[28] Zou Changling, Dong Chunhua, Cui Jinming, et al.. Whispering gallery mode optical micro-resonator: Foundation and application [J]. Phys Sci China, 2012, 42(11): 1155-1175.
[29] V B Braginsky, M L Gorodetsky, V S Ilchenko. Quality factor and nonlinear properties of optical whispering-gallery modes [J]. Phys Lett A, 1989, 137(7): 393-397.
[30] S L Mccall, A F K Levi, R E Slusher, et al.. Whispering-gallery mode microdisk lasers [J]. Appl Phys Lett, 1992, 60(3): 289-291.
[31] D K Armani, T J Kippenberg, S M Spillane, et al.. Ultra-high-Q toroid microcavity on a chip [J]. Nature, 2003, 421(6926): 925-928.
[32] J D Joannopoulos, S G Johnson, J N Winn, et al.. Photonic Crystals Molding the Flow of Light [M]. Princeton University Press, 2008.
[33] Ye Weimin. Introduction to Photonic Crystal [M]. Beijing: Science Press, 2010.
[35] R D Richtmyer. Dielectric resonators [J]. Appl Phys, 1939, 10(6): 391-398.
[36] C G B Garrett, W Kaiser, W L Bond. Stimulated emission into optical whispering modes of spheres [J]. Phys Rev, 1961, 124(6): 1807-1809.
[37] E A J Marcatili. Bends in optical dielectric guides [J]. Bell Syst Tech Jour, 1969, 48(7): 2103-2132.
[38] J C Knight, H S T Driver, R J Hutcheon, et al.. Core resonance capillary fiber whispering gallery mode laser [J]. Opt Lett, 1992, 17(18): 1280-1282.
[39] V Sandoghdar, F Treussart, J Hare, et al.. Very low threshold whispering-gallery-mode microsphere laser [J]. Phy Rev A, 1996, 54(3): R1777.
[40] M Pollinger, D O′Shea, F Warken, et al.. Ultrahigh-Q tunable whispering-gallery-mode microresonator [J]. Phys Rev Lett, 2009, 103(5): 053901.
[41] A B Matsko, A A Savchenkov, V S Ilchenko, et al.. Optical gyroscope with whispering gallery modeoptical cavities [J]. Opt Commum, 2004, 233(1): 107-112.
[42] Y Takahashi, H Hagino, Y Tanaka, et al.. High-Q nanocavity with a 2-ns photon lifetime [J]. Opt Express, 2007, 15(25): 17206-17213.
[43] V S Ilchenko, A A Savchenkov, A B Matsko, et al.. Whispering-gallery-mode electro-optic modulator and photonic microwave receiver [J]. J Opt Soc Am B, 2003, 20(2): 333-342.
[44] M Rosenblit, P Horak, S Helsby, et al.. Single-atom detection using whispering-gallery modes of microdisk resonators [J]. Phy Rev, 2004, A70(5): 053808.
[45] I Teraoka, S Arnold. Enhancing the sensitivity of a whispering-gallery-mode microsphere sensor by a high-refractiveindex surface layer [J]. J Opt Soc Am B, 2006, 23(7): 1434-1441.
[46] V R Dantham, S Holler, V Kolchenko, et al.. Taking whispering-gallery-mode single virus detection and sizing to the limit [J]. Appl Phys Lett, 2011, 101(4): 043704.
[47] Y C Liu, X Luan, H K Li, et al.. Coherent polariton dynamics in coupled highly dissipative cavities [J]. Phys Rev Lett, 2014, 112(21): 213602.
[48] Y C Liu, Y F Xiao, X Luan, et al.. Dynamic dissipative cooling of a mechanical resonator in strong coupling optomechanics [J]. Phys Rev Lett, 2013, 110(15): 153606.
[49] E Yablonovitch. Inhibited spontaneous emission in solid-state physics and electronics [J]. Phys Rev Lett, 1987, 58(20): 2059-2062.
[50] O Painter, R K Lee, A Ascherer, et al.. Two-dimensional photonic band-gap defect mode laser [J]. Science, 1999, 284(5421): 1819-1821.
[51] H G Park, S H Kim, S H Kwon, et al.. Electrically driven single-cell photonic crystal laser [J]. Science, 2004, 305(5689): 1444-1447.
[52] H Altug, J Vuckovic. Photonic crystal nanocavity array laser [J]. Opt Express, 2005, 13(22): 8819-8828.
[53] T Yoshie, A Scherer, J Hendrickson, et al.. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity [J]. Nature, 2004, 432(7014): 200-203.
[54] A Faraon, A Majumdar, H Kim, et al.. Fast electrical control of a quantum dot strongly coupled to a photonic-crystal cavity [J]. Phys Rev Lett, 2010, 104(4): 047402.
[55] M Y Mahmoud, G Bassou, A Taalbi, et al.. Optical channel drop filters based on photonic crystal ring resonators [J]. Opt Commum, 2012, 285(3): 368-372.