
- Photonics Research
- Vol. 9, Issue 7, 1379 (2021)
Abstract
1. INTRODUCTION
Whether light is a wave or a particle has been a long-term debate that can be traced back to Newton’s corpuscular theory and Huygens’ wave theory in the 17th century [1,2]. The phenomena of interference, diffraction, and polarization have convinced people that light could be fully described by a wave, but the appearance of the photoelectric effect has introduced indisputable evidence that light exhibited particle property in the microscopic world [3]. As a compromise, the wave–particle duality of light was eventually and widely accepted [4]. In 1923, the French physicist Louis de Broglie generalized the viewpoint of wave–particle duality from light to electron, and also to all other matters [5,6]. He boldly proposed that electrons with momentum
Even so many years after the development of quantum mechanics, the wave–particle duality is still one of the most intriguing features of the theory. Such a duality supposes that a quantum particle is accompanied by a wave; i.e., both the particle and the wave are assumed to exist objectively. The duality has its own roots in the complementarity principle [8]. It has been studied extensively in the past, but still continues to amaze researchers with its profound implications. The most dramatic consequence of the wave–particle duality is the quantum interference that is displayed on a screen when we send photons or particles in a double-slit setup. The remarkable thing is that this quantum interference occurs even if only one particle is sent at a time and the particle seems somehow to pass through both slits at once, thus leading to interference. How each particle passes through both slits is still a mystery. It may be noted that to explain the quantum interference, it has been postulated that when the quantum entity impinges on the beam splitter, the particle may be going along one path but the wave is divided and travels along both the paths. The wave that goes along the arm where the particle is not present is called an empty wave [9]. Although there have been long-drawn-out debates on empty waves (i.e., waves that do not contain the associated particle properties), this proposal still seems to confuse many people, and is accepted by some and disregarded by others (see, for example, Refs. [9,10]). It may be the case that the nature of quantum entity may be different than what the wave–particle duality has actually depicted [11]. For example, the wave and the particle we associate with a quantum entity are not same as the wave and the particle that we see in the classical world. Recently, there has been an attempt to quantify the nature of particle using a resource theoretic framework [12] where it was proposed that for each quantum entity there are myriads of waves and particles.
Another intriguing aspect of quantum mechanics is the concept of weak measurement [13–17] with suitable pre- and post-selections. Using the weak measurement formalism, it has been suggested that the quantum Cheshire cat [18] can be a possibility where a cat and its grin can be spatially separated. In quantum mechanics, this essentially means that with suitable pre- and post-selected states one can spatially separate the spin of a particle and the particle itself. In recent years, this work has raised lot of questions about separating an attribute of a physical system from the system itself; it is a concept that seems only possible in fiction [19]. However, when this becomes a scientific result, then it is bound to attract the attention of scientists from all over the world. Over last few years, a lot of work has been done in this area to unravel the mysteries of nature [20–34]. It should be further noted that this phenomenon has not only become a theoretical construct, but also been experimentally verified [26–28,34].
Sign up for Photonics Research TOC. Get the latest issue of Photonics Research delivered right to you!Sign up now
The enduring view about the wave–particle duality has suggested that a quantum entity behaves like both a wave and a particle. Suppose one can spatially separate the wave property and the particle property of lights or electrons. This immediately gives rise to some fundamental questions. Can one still observe the interference fringes on the screen when he/she adopts lights with a solely particle property to perform Young-type double-slit experiments? Can one still observe the photoelectric effect when he/she adopts lights with only wave property? Can one still observe the diffraction effects when he/she adopts electrons with a solely particle property to perform the corresponding experiments? Undoubtedly, to answer the above questions and some others, a crucial step is to develop a technology to completely separate the wave property and the particle property for a single physical entity.
In this work, we intend to investigate whether any profound implication can be drawn by linking the wave–particle duality and the quantum Cheshire cat. We shall propose a thought experiment with the help of the quantum Cheshire cat, such that it is possible to spatially separate the particle aspects from the wave aspects for a quantum entity using suitable pre- and post-selections. We will show that the particle attribute is not displayed in one arm of the interferometer, and the wave attribute is not displayed in another arm of the interferometer. Nevertheless, we will show that the quantum entity respects a new complementarity. A conclusion and discussions will be made at the end.
2. THEORETICAL FRAMEWORK
In a recent paper [35], Rab et al. made outstanding progress by presenting an experimental setup called the wave–particle (WP) toolbox. A schematic illustration of the toolbox can be found in Fig. 1. Conversion from the coherence superposition of the polarization states to the coherence superposition of the wave and particle entities exploits the wave–particle box. The mode conversion reads
Figure 1.Schematic illustration of the wave–particle toolbox.
Thus, due to such a toolbox, for a single photon prepared initially in a polarization state
Following Ref. [35], the illustration of spatially separating the wave and particle properties of a single photon is given in Fig. 2. To separate the wave and particle properties, we first need to choose the preselected state as
Figure 2.Illustration of spatially separating the wave property and the particle property of a single photon.
Second, we choose the post-selected state as
On the right arm, the particle state can be converted to the wave state after the actions of BS2 and
This is the explicit calculation to show that, with the proposed setup, the detector D1 always clicks if
Because we know that in the context of pre- and post-selections, the measurement strategy used is the weak measurement so we try to perform suitable weak measurements and extract information about the wave and particle aspects of the photon through these weak values. Following the quantum Cheshire cat proposal [35], which has allowed the separation of the properties of a particle from the particle itself, here we shall separate the wave and particle attributes of a quantum entity. We now move on to define various operators that measure whether the wave and particle attributes are present in the left and right arms. Explicitly, we have the operators
Now the weak value of any observable
3. CONCLUSION AND DISCUSSION
The wave–particle duality is a fundamental concept of quantum mechanics, which implies that a physical entity is both a wave and a particle. There have been a lot of debates regarding the wave–particle duality in the past, and it has been an interesting topic of research as well as one of the least understood aspects in quantum mechanics. Although this duality has worked well in physics to produce experimental confirmations, its interpretation is still being discussed. Although physicist Niels Bohr viewed such a duality as one aspect of the concept of the complementarity principle, there may be more to it. In this work, by exploiting the advantages of weak measurement and a pre- and post-measurement setup, we have spatially separated the so-called wave and particle attributes of a quantum entity. Even though they are dismantled, they still respect a new complementarity relation. This also brings up some further fundamental questions. What is the wave aspect in the left arm of the interferometer like? How is it different from the general wave properties exhibited by an entity? Similarly, we may also ask: what is the “solely particle” aspect like in the right arm like? It would be interesting to find out if the interference fringes on the screen vanish when one adopts the lights with solely particle property to perform the Young-type double-slit experiments, and also to see if the electron diffraction effects disappear when one adopts the electrons with solely particle property to perform the corresponding experiments.
In our work, we have realized the possibility of completely separating wave property and particle property for a quantum object. The proposal in our work is related to the quantum Cheshire cat, for which some physical attributes can be separated from the particle itself. In the next stage, we would like to further consider a tripartite separation; i.e., the separation among the quantum object itself, the wave attribute, and the particle attribute. Once such a separation is achieved, then one will obtain a quantum Cheshire “supercat.” We anticipate further experimental progress in this direction in the near future.
Acknowledgment
Acknowledgment. Jing-Ling Chen is supported by the National Natural Science Foundation of China.
References
[1] M. Tegmark, J. A. Wheeler. 100 years of quantum mysteries. Sci. Am., 284, 68-75(2001).
[2] M. Sands, R. Feynman, R. Leighton. The Feynman Lectures on Physics III, Quantum Mechanics(1965).
[3] A. Einstein. Uber einem die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt. Ann. Phys., 322, 132-148(1905).
[4] J. A. Wheeler, W. H. Zurek. Quantum Theory and Measurement(1984).
[5] L. de Broglie. Waves and quanta. Nature, 112, 540(1923).
[6] L. de Broglie. Radiation–waves and quanta. C. R., 177, 507-510(1923).
[7] G. J. Davisson, L. H. Germer. Diffraction of electrons by a crystal of nickel. Phys. Rev., 30, 705-740(1927).
[8] N. Bohr. The quantum postulate and the recent development of atomic theory. Nature, 121, 580-590(1928).
[9] F. Selleri. On the wave function of quantum mechanics. Lett. Nuovo Cimento, 1, 908-910(1969).
[10] L. Hardy. On the existence of empty waves in quantum theory. Phys. Lett. A, 167, 11-16(1992).
[11] J. Sperling, S. De, T. Nitsche, J. Tiedau, S. Barkhofen, B. Brecht, C. Silberhorn. Wave-particle duality revisited: neither wave nor particle(2019).
[12] S. Das, I. Chakrabarty, A. K. Pati, A. S. De, U. Sen. Quantifying the particle aspect of quantum systems(2018).
[13] Y. Aharonov, D. Z. Albert, L. Vaidman. How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Phys. Rev. Lett., 60, 1351-1354(1988).
[14] Y. Aharonov, L. Vaidman. Properties of a quantum system during the time interval between two measurements. Phys. Rev. A, 41, 11-20(1990).
[15] R. Jozsa. Complex weak values in quantum measurement. Phys. Rev. A, 76, 044103(2007).
[16] O. Hosten, P. Kwiat. Observation of the spin Hall effect of light via weak measurements. Science, 319, 787-790(2008).
[17] J. S. Lundeen, B. Sutherland, A. Patel, C. Stewart, C. Bamber. Direct measurement of the quantum wavefunction. Nature, 474, 188-191(2011).
[18] Y. Aharonov, S. Popescu, D. Rohrlich, P. Skrzypczyk. Quantum Cheshire cats. New J. Phys., 15, 113015(2013).
[19] L. Carroll. Alice’s Adventures in Wonderland(1865).
[20] I. Ibnouhsein, A. Grinbaum. Twin quantum Cheshire photons(2012).
[21] Y. Guryanova, N. Brunner, S. Popescu. The complete quantum Cheshire cat(2012).
[22] A. D. Lorenzo. Hunting for the quantum Cheshire cat(2012).
[23] A. Matzkin, A. K. Pan. Three-box paradox and “Cheshire cat grin”: the case of spin-1 atoms. J. Phys. A, 46, 315307(2013).
[24] Y. Aharonov, E. Cohen, S. Popescu. A current of the Cheshire Cat’s smile: dynamical analysis of weak values(2015).
[25] R. Correa, M. F. Santos, C. H. Monken, P. L. Saldanha. Quantum Cheshire cat as simple quantum interference. New J. Phys., 17, 053042(2015).
[26] D. P. Atherton, G. Ranjit, A. A. Geraci, J. D. Weinstein. Observation of a classical Cheshire cat in an optical interferometer. Opt. Lett., 40, 879-881(2015).
[27] T. Denkmayr, H. Geppert, S. Sponar, H. Lemmel, A. Matzkin, J. Tollaksen, Y. Hasegawa. Observation of a quantum Cheshire cat in a matter-wave interferometer experiment. Nat. Commun., 5, 4492(2014).
[28] J. M. Ashby, P. D. Schwarz, M. Schlosshauer. Observation of the quantum paradox of separation of a single photon from one of its properties. Phys. Rev. A, 94, 012102(2016).
[29] J. D. Bancal. Quantum physics: isolate the subject. Nat. Phys., 10, 11-12(2014).
[30] Q. Duprey, S. Kanjilal, U. Sinha, D. Home, A. Matzkin. The quantum Cheshire cat effect: theoretical basis and observational implications. Ann. Phys., 391, 1-15(2018).
[31] D. Das, A. K. Pati. Can two quantum Cheshire cats exchange grins?. New J. Phys., 22, 063032(2020).
[32] D. Das, A. K. Pati. Teleporting grin of a quantum Cheshire cat without cat(2019).
[33] D. Das, U. Sen. Delayed choice of paths selected by grin and snarl of quantum Cheshire cat(2020).
[34] Z. H. Liu, W. W. Pan, X. Y. Xu, M. Yang, J. Zhou, Z. Y. Luo, K. Sun, J. L. Chen, J. S. Xu, C. F. Li, G. C. Guo. Experimental exchange of grins between quantum Cheshire cats. Nat. Commun., 11, 3006(2020).
[35] A. S. Rab, E. Polino, Z. X. Man, N. B. An, Y. J. Xia, N. Spagnolo, R. L. Franco, F. Sciarrino. Entanglement of photons in their dual wave-particle nature. Nat. Commun., 8, 915(2017).

Set citation alerts for the article
Please enter your email address