• Optical Instruments
  • Vol. 44, Issue 1, 15 (2022)
Wei CHEN, Qing WANG*, and Guibo ZHU
Author Affiliations
  • School of Electronic Engineering and Optoelectronic Technology, Nanjing University of Science and Technology, Nanjing 210094, China
  • show less
    DOI: 10.3969/j.issn.1005-5630.2022.01.003 Cite this Article
    Wei CHEN, Qing WANG, Guibo ZHU. Contrastive measurement of off-axis paraboloids[J]. Optical Instruments, 2022, 44(1): 15 Copy Citation Text show less
    Diagram of off-axis paraboloid misalignment
    Fig. 1. Diagram of off-axis paraboloid misalignment
    Exit pupil transformation diagram
    Fig. 2. Exit pupil transformation diagram
    Optical path simulation
    Fig. 3. Optical path simulation
    Influence of adjustment error on aberration
    Fig. 4. Influence of adjustment error on aberration
    Actual measurements of stigmatic null test
    Fig. 5. Actual measurements of stigmatic null test
    Variation diagram of rough adjustment process
    Fig. 6. Variation diagram of rough adjustment process
    Software acquisition results of dynamic interferometer
    Fig. 7. Software acquisition results of dynamic interferometer
    Luphoscan measurement of off-axis paraboloids
    Fig. 8. Luphoscan measurement of off-axis paraboloids
    Measurement results read by MATLAB
    Fig. 9. Measurement results read by MATLAB
    AberrationMag.waves
    Tilt0.017
    Focus0.013
    Astig0.024
    Coma Spherical 0.035 -0.01
    Table 1. Zernike coefficient of measured results
    测量方式 测量过程像差判断Luphoscan测量结果初步消像散与
    动态干涉仪基于零位干涉原理,调节抛物面,使干涉图接近零条纹,解包获得面形。无明显像差,但离轴量误差被视为调整误差调整掉了。
    Luphoscan基于多波长干涉测距原理,通过匹配抛物面小区域实际与理论sag值来确定离轴抛物面的偏心与倾斜,然后按离轴抛物面理论方程规划扫描路径,扫描过程始终垂直于待测面,计算实际与理论值偏差作为测量结果。存在明显像散项
    Table 2. Comparison of Luphoscan and dynamic interferometer measurements