[1] Bell L E 2008 Cooling, heating, generating power, and recovering waste heat with thermoelectric systems Science 321 1457–61
[2] Qin B C et al 2021 Momentum and energy multiband alignment enable power generation and thermoelectric cooling Science 373 556–61
[3] Minnich A J, Dresselhaus M S, Ren Z F and Chen G 2009 Bulk nanostructured thermoelectric materials: current research and future prospects Energy Environ. Sci. 2 466–79
[4] Hicks L D and Dresselhaus M S 1993 Effect of quantum-well structures on the thermoelectric figure of merit Phys. Rev. B 47 12727–31
[5] Hicks L D and Dresselhaus M S 1993 Use of quantum-well superlattices to obtain a high figure of merit from nonconventional thermoelectric materials MRS Online Proc. Libr. 326 413–8
[6] Zeng J W et al 2018 Experimental identification of critical condition for drastically enhancing thermoelectric power factor of two-dimensional layered materials Nano Lett. 18 7538–45
[7] Zhou C L, Birner S, Tang Y, Heinselman K and Grayson M 2013 Driving perpendicular heat flow: (p×n)-type transverse thermoelectrics for microscale and cryogenic peltier cooling Phys. Rev. Lett. 110 227701
[8] Tang Y, Cui B Y, Zhou C L and Grayson M 2015 p×n-type transverse thermoelectrics: a novel type of thermal management material J. Electron. Mater. 44 2095–104
[9] Sarikurt S, Kocabas T and Sevik C 2020 High-throughput computational screening of 2D materials for thermoelectrics J. Mater. Chem. A 8 19674–83
[10] Xing G Z, Sun J F, Li Y W, Fan X F, Zheng W T and Singh D J 2017 Electronic fitness function for screening semiconductors as thermoelectric materials Phys. Rev. Mater. 1 065405
[11] Hwang S R, Li W-H, Lee K C, Lynn J W and Wu C-G 2000 Spiral magnetic structure of Fe in Van der Waals gapped FeOCl and polyaniline-intercalated FeOCl Phys. Rev. B 62 14157–63
[12] Qi H B, Sun Z H, Wang N, Qin G Z, Zhang H B and Shen C 2021 Two-dimensional Al2I2Se2: a promising anisotropic thermoelectric material J. Alloys Compd. 876 160191
[13] Wang C and Gao G Y 2020 Titanium nitride halides monolayers: promising 2D anisotropic thermoelectric materials J. Phys.: Condens. Matter 32 205503
[14] Maghirang A B, Huang Z Q, Villaos R A B, Hsu C H, Feng L Y, Florido E, Lin H, Bansil A and Chuang F C 2019 Predicting two-dimensional topological phases in Janus materials by substitutional doping in transition metal dichalcogenide monolayers npj 2D Mater. Appl. 3 35
[15] Han H et al 2017 Bioinspired geometry-switchable Janus nanofibers for eye-readable H2 sensors Adv. Funct. Mater. 27 1701618
[16] Ma H, Hou J W, Wang X W, Zhang J, Yuan Z Q, Xiao L, Wei Y, Fan S S, Jiang K L and Liu K 2017 Flexible, all-inorganic actuators based on vanadium dioxide and carbon nanotube bimorphs Nano Lett. 17 421–8
[17] Lao Z X, Sun R, Jin D D, Ren Z G, Xin C, Zhang Y C, Jiang S J, Zhang Y Y and Zhang L 2021 Encryption/decryption and microtarget capturing by pH-driven Janus microstructures fabricated by the same femtosecond laser printing parameters Int. J. Extreme Manuf. 3 025001
[18] Samanta M, Ghosh T, Chandra S and Biswas K 2020 Layered materials with 2D connectivity for thermoelectric energy conversion J. Mater. Chem. A 8 12226–61
[19] Kresse G and Furthmüller J 1996 Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set Phys. Rev. B 54 11169–86
[20] Kresse G and Joubert D 1999 From ultrasoft pseudopotentials to the projector augmented-wave method Phys. Rev. B 59 1758–75
[21] Blochl P E 1994 Projector augmented-wave method Phys. Rev. B 50 17953–79
[22] Perdew J P, Burke K and Ernzerhof M 1996 Generalized gradient approximation made simple Phys. Rev. Lett. 77 3865–8
[23] Togo A, Oba F and Tanaka I 2008 First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures Phys. Rev. B 78 134106
[24] Ziman J M 2001 Electrons and Phonons: The Theory of Transport Phenomena in Solids (New York: Oxford University Press)
[25] Lindsay L 2016 First principles peierls-boltzmann phonon thermal transport: a topical review Nanoscale Microscale Thermophys. Eng. 20 67–84
[26] Li W, Carrete J, Katcho N A and Mingo N 2014 ShengBTE: a solver of the Boltzmann transport equation for phonons Comput. Phys. Commun. 185 1747–58
[27] Madsen G K H and Singh D J 2006 BoltzTraP. A code for calculating band-structure dependent quantities Comput. Phys. Commun. 175 67–71
[28] Xi J Y, Long M Q, Tang L, Wang D and Shuai Z G 2012 First-principles prediction of charge mobility in carbon and organic nanomaterials Nanoscale 4 4348–69
[29] Bruzzone S and Fiori G 2011 Ab-initio simulations of deformation potentials and electron mobility in chemically modified graphene and two-dimensional hexagonal boron-nitride Appl. Phys. Lett. 99 222108
[30] Qiao J S, Kong X H, Hu Z X, Yang F and Ji W 2014 High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus Nat. Commun. 5 4475
[31] Venkatasubramanian R, Siivola E, Colpitts T and O’quinn B 2001 Thin-film thermoelectric devices with high room-temperature figures of merit Nature 413 597–602
[32] Ahmad S and Mahanti S D 2010 Energy and temperature dependence of relaxation time and Wiedemann-Franz law on PbTe Phys. Rev. B 81 165203
[33] Kumar G S, Prasad G and Pohl R O 1993 Experimental determinations of the Lorenz number J. Mater. Sci. 28 4261–72
[34] Naseri M, Lin S R, Jalilian J, Gu J X and Chen Z F 2018 Penta-P2X (X=C, Si) monolayers as wide-bandgap semiconductors: a first principles prediction Front. Phys. 13 138102
[35] Ge Y F, Wan W H, Ren Y L, Li F and Liu Y 2020 Phonon-limited electronic transport of two-dimensional ultrawide bandgap material h-BeO Appl. Phys. Lett. 117 123101
[36] Lindsay L, Broido D A and Reinecke T L 2013 First-principles determination of ultrahigh thermal conductivity of boron arsenide: a competitor for diamond? Phys. Rev. Lett. 111 025901
[37] Kim W 2015 Strategies for engineering phonon transport in thermoelectrics J. Mater. Chem. C 3 10336–48
[38] Sahin H, Cahangirov S, Topsakal M, Bekaroglu E, Akturk E, Senger R T and Ciraci S 2009 Monolayer honeycomb structures of group-IV elements and III–V binary compounds: first-principles calculations Phys. Rev. B 80 155453
[39] Carrete J, Li W, Lindsay L, Broido D A, Gallego L J and Mingo N 2016 Physically founded phonon dispersions of few-layer materials and the case of borophene Mater. Res. Lett. 4 204–11
[40] Ward A 2009 First Principles Theory of the Lattice Thermal Conductivity of Semiconductors (Boston, MA: Boston College)
[41] Ecsedy D J and Klemens P G 1977 Thermal resistivity of die electric crystals due to four-phonon processes and optical modes Phys. Rev. B 15 5957–62
[42] Lindsay L, Broido D A and Mingo N 2010 Flexural phonons and thermal transport in graphene Phys. Rev. B 82 115427
[43] Qin G Z, Zhang X L, Yue S Y, Qin Z Z, Wang H M, Han Y and Hu M 2016 Resonant bonding driven giant phonon anharmonicity and low thermal conductivity of phosphorene Phys. Rev. B 94 165445
[44] Gu X K, Fan Z Y, Bao H and Zhao C Y 2019 Revisiting phonon-phonon scattering in single-layer graphene Phys. Rev. B 100 064306
[45] Yang R Q, Yue S Y, Quan Y J and Liao B L 2021 Crystal symmetry based selection rules for anharmonic phonon-phonon scattering from a group theory formalism Phys. Rev. B 103 184302
[46] Vallabhaneni A K, Singh D, Bao H, Murthy J and Ruan X L 2016 Reliability of Raman measurements of thermal conductivity of single-layer graphene due to selective electron-phonon coupling: a first-principles study Phys. Rev. B 93 125432
[47] Hellman O and Broido D A 2014 Phonon thermal transport in Bi2Te3 from first principles Phys. Rev. B 90 134309
[48] Qiu B, Bao H, Zhang G Q, Wu Y and Ruan X L 2012 Molecular dynamics simulations of lattice thermal conductivity and spectral phonon mean free path of PbTe: bulk and nanostructures Comput. Mater. Sci. 53 278–85
[49] Lindsay L and Broido D A 2008 Three-phonon phase space and lattice thermal conductivity in semiconductors J. Phys.: Condens. Matter 20 165209
[50] Peng B, Zhang H, Shao H Z, Xu Y C, Zhang X C and Zhu H Y 2016 Low lattice thermal conductivity of stanene Sci. Rep. 6 20225
[51] Park S and Ryu B 2016 Hybrid-density functional theory study on the band structures of tetradymite-Bi2Te3, Sb2Te3, Bi2Se3, and Sb2Se3 thermoelectric materials J. Korean Phys. Soc. 69 1683–7
[52] Berland K and Persson C 2018 Thermoelectric transport of GaAs, InP, and PbTe: hybrid functional with k· interpolation versus scissor-corrected generalized gradient approximation J. Appl. Phys. 123 205703
[53] Zhao G L, Gao F and Bagayoko D 2018 Reliable density functional calculations for the electronic structure of thermoelectric material ZnSb AIP Adv. 8 105211
[54] Yang J M, Yang G, Zhang G B and Wang Y X 2014 Low effective mass leading to an improved ZT value by 32% for n-type BiCuSeO: a first-principles study J. Mater. Chem. A 2 13923–31
[55] Maintz S, Deringer V L, Tchougréeff A L and Dronskowski R 2016 LOBSTER: a tool to extract chemical bonding from plane-wave based DFT J. Comput. Chem. 37 1030–5
[56] Zhang W X, Huang Z S, Zhang W L and Li Y R 2014 Two-dimensional semiconductors with possible high room temperature mobility Nano Res. 7 1731–7