• International Journal of Extreme Manufacturing
  • Vol. 4, Issue 3, 35201 (2022)
Hamidreza Zobeiri1, Nicholas Hunter1, Shen Xu2,*, Yangsu Xie3, and Xinwei Wang1
Author Affiliations
  • 1Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, United States of America
  • 2School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai 201620, People’s Republic of China
  • 3College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518055, People’s Republic of China
  • show less
    DOI: 10.1088/2631-7990/ac6cb1 Cite this Article
    Hamidreza Zobeiri, Nicholas Hunter, Shen Xu, Yangsu Xie, Xinwei Wang. Robust and high-sensitivity thermal probing at the nanoscale based on resonance Raman ratio (R3)[J]. International Journal of Extreme Manufacturing, 2022, 4(3): 35201 Copy Citation Text show less
    References

    [1] Malekpour H and Balandin A A 2018 Raman-based technique for measuring thermal conductivity of graphene and related materials J. Raman Spectrosc. 49 106-20

    [2] Xu S, Fan A, Wang H, Zhang X and Wang X 2020 Raman-based nanoscale thermal transport characterization: a critical review Int. J. Heat Mass Transfer 154 119751

    [3] Wang R, Xu S, Yue Y and Wang X 2020 Thermal behavior of materials in laser-assisted extreme manufacturing: Raman-based novel characterization Int. J. Extreme Manuf. 2 032004

    [4] Sett S, Aggarwal V K, Singha A and Raychaudhuri A K 2020 Temperature-dependent thermal conductivity of a single Germanium nanowire measured by Optothermal Raman Spectroscopy Phys. Rev. Appl. 13 054008

    [5] Hajidavalloo M R, Shirazi F A and Mahjoob M J 2020 Performance of different optimal charging schemes in a solar charging station using dynamic programming Optim. Control Appl. Methods 41 1568-83

    [6] Xie Y, Han M, Wang R, Zobeiri H, Deng X, Zhang P and Wang X 2019 Graphene aerogel based bolometer for ultrasensitive sensing from ultraviolet to far-infrared ACS Nano 13 5385-96

    [7] Gao J, Zobeiri H, Lin H, Xie D, Yue Y and Wang X 2021 Coherency between thermal and electrical transport of partly reduced graphene paper Carbon 178 92-102

    [8] Velson N V, Zobeiri H and Wang X 2020 Rigorous prediction of Raman intensity from multi-layer films Opt. Express 28 35272-83

    [9] Xie Y, Zobeiri H, Xiang L, Eres G, Wang J and Wang X 2021 Dual-pace transient heat conduction in vertically aligned carbon nanotube arrays induced by structure separation Nano Energy 90 106516

    [10] Sahoo S, Gaur A P S, Ahmadi M, Guinel M J F and Katiyar R S 2013 Temperature-dependent Raman studies and thermal conductivity of few-layer MoS2 J. Phys. Chem. C 117 9042-7

    [11] Lin H, Wang R, Zobeiri H, Wang T, Xu S and Wang X 2021 In-plane structure domain size of nm-thick MoSe2 uncovered by low-momentum phonon scattering Nanoscale 13 7723-34

    [12] Yuan P, Wang R, Tan H, Wang T and Wang X 2017 Energy transport state resolved Raman for probing interface energy transport and hot carrier diffusion in few-layered MoS2 ACS Photonics 4 3115-29

    [13] Wang R, Wang T, Zobeiri H, Yuan P, Deng C, Yue Y, Xu S and Wang X 2018 Measurement of the thermal conductivities of suspended MoS2 and MoSe2 by nanosecond ET-Raman without temperature calibration and laser absorption evaluation Nanoscale 10 23087-102

    [14] Hunter N, Azam N, Zobeiri H, Wang R, Mahjouri-Samani M and Wang X 2020 Interfacial thermal conductance between monolayer WSe2 and SiO2 under consideration of radiative electron-hole recombination ACS Appl. Mater. Interfaces 12 51069-81

    [15] Zobeiri H, Wang R, Zhang Q, Zhu G and Wang X 2019 Hot carrier transfer and phonon transport in suspended nm WS2 films Acta Mater. 175 222-37

    [16] Hajidavalloo M R, Ayatolah Zadeh Shirazi F and Mahjoob M 2020 Energy cost minimization in an electric vehicle solar charging station via dynamic programming J. Appl. Comput. Mech. 51 275-80

    [17] Zobeiri H, Hunter N, Wang R, Liu X, Tan H, Xu S and Wang X 2020 Thermal conductance between water and nm-thick WS2: extremely localized probing using nanosecond energy transport state-resolved Raman Nanoscale Adv. 2 5821-32

    [18] Hunter N, Zobeiri H, Wang T and Wang X 2021 Effect of time and spatial domains on monolayer 2D material interface thermal conductance measurement using ns ET-Raman Int. J. Heat Mass Transfer 179 121644

    [19] Wang R, Wang T, Zobeiri H, Li D and Wang X 2020 Energy and charge transport in 2D atomic layer materials: Raman-based characterization Nanomaterials 10 1807

    [20] Zobeiri H et al 2021 Interfacial thermal resistance between nm-thick MoS2 and quartz substrate: a critical revisit under phonon mode-wide thermal non-equilibrium Nano Energy 89 106364

    [21] Li H, Wu J, Yin Z and Zhang H 2014 Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 nanosheets Acc. Chem. Res. 47 1067-75

    [22] Yuan P, Liu J, Wang R and Wang X 2017 The hot carrier diffusion coefficient of sub-10 nm virgin MoS2: uncovered by non-contact optical probing Nanoscale 9 6808-20

    [23] Varshni Y P 1967 Temperature dependence of the energy gap in semiconductors Physica 34 149-54

    [24] Sarswat P K and Free M L 2012 A study of energy band gap versus temperature for Cu2ZnSnS4 thin films Physica B 407 108-11

    [25] Smith E and Dent G 2020 Modern Raman Spectroscopy: A Practical Approach (New York: Wiley)

    [26] Fan J-H, Gao P, Zhang A-M, Zhu B-R, Zeng H-L, Cui X-D, He R and Zhang Q-M 2014 Resonance Raman scattering in bulk 2H-MX2 (M= Mo, W; X= S, Se) and monolayer MoS2 J. Appl. Phys. 115 053527

    [27] Loudon R 1963 Theory of the first-order Raman effect in crystals Proc. R. Soc. A 275 218-32

    [28] Zobeiri H, Xu S, Yue Y, Zhang Q, Xie Y and Wang X 2020 Effect of temperature on Raman intensity of nm-thick WS2: combined effects of resonance Raman, optical properties, and interface optical interference Nanoscale 12 6064-78

    [29] Huang X et al 2016 Quantitative analysis of temperature dependence of Raman shift of monolayer WS2 Sci. Rep. 6 1-8

    [30] Sinha S, Sathe V and Arora S K 2019 Temperature dependent Raman investigations of few-layered WS2 nanosheets Solid State Commun. 298 113626

    [31] Wang T, Xu S, Hurley D H, Yue Y and Wang X 2016 Frequency-resolved Raman for transient thermal probing and thermal diffusivity measurement Opt. Lett. 41 80-83

    [32] Zobeiri H, Wang R, Wang T, Lin H, Deng C and Wang X 2019 Frequency-domain energy transport state-resolved Raman for measuring the thermal conductivity of suspended nm-thick MoSe2 Int. J. Heat Mass Transfer 133 1074-85

    [33] Conley H J, Wang B, Ziegler J I, Haglund R F, Pantelides S T and Bolotin K I 2013 Bandgap engineering of strained monolayer and bilayer MoS2 Nano Lett. 13 3626-30

    [34] Lu C-P, Li G, Mao J, Wang L-M and Andrei E Y 2014 Bandgap, mid-gap states, and gating effects in MoS2 Nano Lett. 14 4628-33

    [35] O’Hare P A G, Hubbard W N, Johnson G K and Flotow H E 1984 Calorimetric measurements of the low-temperature heat capacity, standard molar enthalpy of formation at 298.15 K, and high-temperature molar enthalpy increments relative to 298.15 K of tungsten disulfide (WS2), and the thermodynamic properties to 1500 K J. Chem. Thermodyn. 16 45-59

    [36] Klemens P G 1958 Solid state physics Advances in Research and Applications vol 7 (New York: Academic) p 87

    [37] Toberer E S, Zevalkink A and Snyder G J 2011 Phonon engineering through crystal chemistry J. Mater. Chem. 21 15843-52

    [38] Huang Z, Wu T, Kong S, Meng Q-L, Zhuang W, Jiang P and Bao X 2016 Enhancement of anisotropic thermoelectric performance of tungsten disulfide by titanium doping J. Mater. Chem. A 4 10159-65

    [39] Elahi A, Bidault X and Chaudhuri S 2022 Temperature-transferable coarse-grained model for poly(propylene oxide) to study thermo-responsive behavior of triblock copolymers J. Phys. Chem. B 126 292-307

    [40] Zobeiri H, Wang R, Deng C, Zhang Q and Wang X 2019 Polarized Raman of nanoscale two-dimensional materials: combined optical and structural effects J. Phys. Chem. C 123 23236-45

    [41] Zobeiri H, Hunter N, Wang R, Wang T and Wang X 2021 Direct characterization of thermal nonequilibrium between optical and acoustic phonons in graphene paper under photon excitation Adv. Sci. 8 2004712

    [42] Wang R et al 2020 Distinguishing optical and acoustic phonon temperatures and their energy coupling factor under photon excitation in nm 2D materials Adv. Sci. 7 2000097

    [43] Liu H-L, Shen C-C, Su S-H, Hsu C-L, Li M-Y and Li L-J 2014 Optical properties of monolayer transition metal dichalcogenides probed by spectroscopic ellipsometry Appl. Phys. Lett. 105 201905

    [44] Kim H-C et al 2015 Engineering optical and electronic properties of WS2 by varying the number of layers ACS nano 9 6854-60

    [45] Alfihed S, Hossain M, Alharbi A, Alyamani A and Alharbi F H 2013 PLD grown polycrystalline tungsten disulphide (WS2) films J. Mater. 2013 603648

    [46] Beal A R and Hughes H P 1979 Kramers-Kronig analysis of the reflectivity spectra of 2H-MoS2, 2H-MoSe2 and 2H-MoTe2 J. Phys. C: Solid State Phys. 12 881

    [47] Hurley D, Xu S, Wang T, Wang X and Yue Y 2015 Development of time-domain differential Raman for transient thermal probing of materials Opt. Express 23 10040-56

    [48] Wang R, Zobeiri H, Lin H, Qu W, Bai X, Deng C and Wang X 2019 Anisotropic thermal conductivities and structure in lignin-based microscale carbon fibers Carbon 147 58-69

    Hamidreza Zobeiri, Nicholas Hunter, Shen Xu, Yangsu Xie, Xinwei Wang. Robust and high-sensitivity thermal probing at the nanoscale based on resonance Raman ratio (R3)[J]. International Journal of Extreme Manufacturing, 2022, 4(3): 35201
    Download Citation