• International Journal of Extreme Manufacturing
  • Vol. 6, Issue 1, 15101 (2024)
Cijun Shuai1,2,3,*, Xiaoxin Shi1, Feng Yang1, Haifeng Tian1, and Pei Feng1
Author Affiliations
  • 1State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, People’s Republic of China
  • 2Institute of Additive Manufacturing, Jiangxi University of Science and Technology, Nanchang 330013, People’s Republic of China
  • 3College of Mechanical Engineering, Xinjiang University, Urumqi 830017, People’s Republic of China
  • show less
    DOI: 10.1088/2631-7990/ad01fd Cite this Article
    Cijun Shuai, Xiaoxin Shi, Feng Yang, Haifeng Tian, Pei Feng. Oxygen vacancy boosting Fenton reaction in bone scaffold towards fighting bacterial infection[J]. International Journal of Extreme Manufacturing, 2024, 6(1): 15101 Copy Citation Text show less
    References

    [1] Zhao C Q, Liu W Y, Zhu M, Wu C T and Zhu Y F 2022 Bioceramic-based scaffolds with antibacterial function for bone tissue engineering: a review Bioact. Mater. 18 383–98

    [2] Qian G W, Zhang L M, Shuai Y, Wu X T, Zeng Z K, Peng S P and Shuai C J 2023 3D-printed CuFe2O4-MXene/PLLA antibacterial tracheal scaffold against implantation-associated infection Appl. Surf. Sci. 614 156108

    [3] Qi F, Wang Z, Yang L, Li H, Chen G, Peng S, Yang S and Shuai C 2023 A collaborative CeO2@metal-organic framework nanosystem to endow scaffolds with photodynamic antibacterial effect Mater. Today Chem. 27 101336

    [4] Foster T J 2017 Antibiotic resistance in Staphylococcus aureus. Current status and future prospects FEMS Microbiol. Rev. 41 430–49

    [5] Kiran A S K, Kumar T S S, Sanghavi R, Doble M and Ramakrishna S 2018 Antibacterial and bioactive surface modifications of titanium implants by PCL/TiO2 nanocomposite coatings Nanomaterials 8 860

    [6] Gu G S, Eris? en D E, Yang K, Zhang B C, Shen M G, Zou J Y, Qi X, Chen S S and Xu X H 2022 Antibacterial and anti-inflammatory activities of chitosan/copper complex coating on medical catheters: in vitro and in vivo J. Biomed. Mater. Res. B 110 1899–910

    [7] Shuai C J, Liu G F, Yang Y W, Qi F W, Peng S P, Yang W J, He C X, Wang G Y and Qian G W 2020 A strawberry-like Ag-decorated barium titanate enhances piezoelectric and antibacterial activities of polymer scaffold Nano Energy 74 104825

    [8] Godoy-Gallardo M, Eckhard U, Delgado L M, de Roo Puente Y J D, Hoyos-Nogués M, Gil F J and Perez R A 2021 Antibacterial approaches in tissue engineering using metal ions and nanoparticles: from mechanisms to applications Bioact. Mater. 6 4470–90

    [9] Zan J, Shuai Y, Zhang J, Zhao J C, Sun B X and Yang L Y M 2023 Hyaluronic acid encapsulated silver metal organic framework for the construction of a slow-controlled bifunctional nanostructure: antibacterial and anti-inflammatory in intrauterine adhesion repair Int. J. Biol. Macromol. 230 123361

    [10] Gao L Z, Fan K L and Yan X Y 2017 Iron oxide nanozyme: a multifunctional enzyme mimetic for biomedical applications Theranostics 7 3207–27

    [11] Hauser A K, Mitov M I, Daley E F, McGarry R C, Anderson K W and Hilt J Z 2016 Targeted iron oxide nanoparticles for the enhancement of radiation therapy Biomaterials 105 127–35

    [12] Zanganeh S et al 2016 Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues Nat. Nanotechnol. 11 986–94

    [13] Park S C, Kim N H, Yang W, Nah J W, Jang M K and Lee D 2016 Polymeric micellar nanoplatforms for Fenton reaction as a new class of antibacterial agents J. Control. Release 221 37–47

    [14] Wang T T, Zhang H, Liu H H, Yuan Q, Ren F, Han Y B, Sun Q, Li Z and Gao M Y 2020 Boosting H2O2-guided chemodynamic therapy of cancer by enhancing reaction kinetics through versatile biomimetic Fenton nanocatalysts and the second near-infrared light irradiation Adv. Funct. Mater. 30 1906128

    [15] Ban C Y, Shi H Z, Ding Q, Wu B, Xia R, Qian J S and Cao M 2023 Fe/ABTS/PVP nanocomplexes with dual GSH-depleting for photothermal-reinforced catalytic bacterial killing Colloid Interface Sci. Commun. 53 100705

    [16] Wang H P, Zhou S R, Guo L X, Wang Y X and Feng L H 2020 Intelligent hybrid hydrogels for rapid in situ detection and photothermal therapy of bacterial infection ACS Appl. Mater. Interfaces 12 39685–94

    [17] Erttmann S F and Gekara N O 2019 Hydrogen peroxide release by bacteria suppresses inflammasome-dependent innate immunity Nat. Commun. 10 3493

    [18] Huang G, Chen H B, Dong Y, Luo X Q, Yu H J, Moore Z, Bey E A, Boothman D A and Gao J M 2013 Superparamagnetic iron oxide nanoparticles: amplifying ROS stress to improve anticancer drug efficacy Theranostics 3 116–26

    [19] Li W P, Su C H, Chang Y C, Lin Y J and Yeh C S 2016 Ultrasound-induced reactive oxygen species mediated therapy and imaging using a Fenton reaction activable polymersome ACS Nano 10 2017–27

    [20] Huang Y M, Yu Y, Yu Y F and Zhang B 2020 Oxygen vacancy engineering in photocatalysis Sol. RRL 4 2000037

    [21] Zhan S H, Zhang H X, Mi X Y, Zhao Y B, Hu C and Lyu L 2020 Efficient Fenton-like process for pollutant removal in electron-rich/poor reaction sites induced by surface oxygen vacancy over cobalt–zinc oxides Environ. Sci. Technol. 54 8333–43

    [22] Wu Y Z, Liao Q, Wu L, Luo Y X, Zhang W, Guan M, Pan H B, Tong L P, Chu P K and Wang H Y 2021 ZnL2-BPs integrated bone scaffold under sequential photothermal mediation: a win–win strategy delivering antibacterial therapy and fostering osteogenesis thereafter ACS Nano 15 17854–69

    [23] Mohajeri A and Dashti N L 2017 Molecular adsorption of hydrogen peroxide on N-and Fe-doped Titania nanoclusters Appl. Surf. Sci. 407 121–9

    [24] Feng H F et al 2018 Activating titania for efficient electrocatalysis by vacancy engineering ACS Catal. 8 4288–93

    [25] Qiu J Y, Chen J H, Xiao B Y, Li X X, Wan T, Qin F H, Mi Y and Huang Z Y 2020 Oxygen deficient TiO2?x with dual reaction sites for activation of H2O2 to degrade organic pollutants Catal. Lett. 150 222–33

    [26] Wu X M, Liu X C, Wei J, Ma J, Deng F and Wei S C 2012 Nano-TiO2/PEEK bioactive composite as a bone substitute material: in vitro and in vivo studies Int. J. Nanomed. 7 1215–25

    [27] Dong Y, Zhang S, Du X, Hong S, Zhao S N, Chen Y X, Chen X H and Song H H 2019 Boosting the electrical double-layer capacitance of graphene by self-doped defects through ball-milling Adv. Funct. Mater. 29 1901127

    [28] Jonnalagadda J B, Rivero I V and Dertien J S 2015 In vitro chondrocyte behavior on porous biodegradable poly (e-caprolactone)/polyglycolic acid scaffolds for articular chondrocyte adhesion and proliferation J. Biomater. Sci. Polym. Ed. 26 401–19

    [29] Wu L X, Meng L, Wang Y Y, Lv M, Ouyang T Y, Wang Y L and Zeng X Y 2023 Fabrication of polyetheretherketone (PEEK)-based 3D electronics with fine resolution by a hydrophobic treatment assisted hybrid additive manufacturing method Int. J. Extrem. Manuf. 5 035003

    [30] Gao C D, Yao X, Deng Y W, Pan H and Shuai C J 2023 Laser-beam powder bed fusion followed by annealing with stress: a promising route for magnetostrictive improvement of polycrystalline Fe81Ga19 alloys Addit. Manuf. 68 103516

    [31] Han W, Kong L B and Xu M 2022 Advances in selective laser sintering of polymers Int. J. Extrem. Manuf. 4 042002

    [32] Pal S, Lojen G, Kokol V and Drstvensek I 2018 Evolution of metallurgical properties of Ti-6Al-4V alloy fabricated in different energy densities in the selective laser melting technique J. Manuf. Process. 35 538–46

    [33] Pal S, Gubeljak N, Hudak R, Lojen G, Rajtukova V, Predan J, Kokol V and Drstvensek I 2019 Tensile properties of selective laser melting products affected by building orientation and energy density Mater. Sci. Eng. A 743 637–47

    [34] Wang G R, Hou H Y, Yan Y F, Jagatramka R, Shirsalimian A, Wang Y F, Li B Z, Daly M and Cao C H 2023 Recent advances in the mechanics of 2D materials Int. J. Extrem. Manuf. 5 032002

    [35] Lin L-S et al 2018 Simultaneous Fenton-like ion delivery and glutathione depletion by MnO2-based nanoagent to enhance chemodynamic therapy Angew. Chem. 130 4996–5000

    [36] Wang X W et al 2020 Biodegradable nickel disulfide nanozymes with GSH-depleting function for high-efficiency photothermal-catalytic antibacterial therapy iScience 23 101281

    [37] Daiko Y, Schmidt J, Kawamura G, Romeis S, Segets D, Iwamoto Y and Peukert W 2017 Mechanochemically induced sulfur doping in ZnO via oxygen vacancy formation Phys. Chem. Chem. Phys. 19 13838–45

    [38] Rinaudo M G, Beltrán A M, Fernández M A, Cad′us L E and Morales M R 2020 Tailoring materials by high-energy ball milling: TiO2 mixtures for catalyst support application Mater. Today Chem. 17 100340

    [39] He J, Wu P W, Lu L J, Li H P, Ji H Y, He M Q, Jia Q D, Hua M Q, Zhu W S and Li H M 2019 Lattice-refined transition-metal oxides via ball milling for boosted catalytic oxidation performance ACS Appl. Mater. Interfaces 11 36666–75

    [40] Dong G Y, Wang X, Chen Z W and Lu Z Y 2018 Enhanced photocatalytic activity of vacuum-activated TiO2 induced by oxygen vacancies Photochem. Photobiol. 94 472–83

    [41] Mao C L, Cheng H G, Tian H, Li H, Xiao W J, Xu H, Zhao J C and Zhang L Z 2018 Visible light driven selective oxidation of amines to imines with BiOCl: does oxygen vacancy concentration matter? Appl. Catal. B 228 87–96

    [42] Feng P, Zhao R Y, Tang W M, Yang F, Tian H F, Peng S P, Pan H and Shuai C J 2023 Structural and functional adaptive artificial bone: materials, fabrications, and properties Adv. Funct. Mater. 33 2214726

    [43] Chen A N, Su J, Li Y J, Zhang H B, Shi Y S, Yan C Z and Lu J 2023 3D/4D printed bio-piezoelectric smart scaffolds for next-generation bone tissue engineering Int. J. Extrem. Manuf. 5 032007

    [44] Roy T D, Simon J L, Ricci J L, Rekow E D, Thompson V P and Parsons J R 2003 Performance of degradable composite bone repair products made via three-dimensional fabrication techniques J. Biomed. Mater. Res. A 66A 283–91

    [45] Gupte M J et al 2018 Pore size directs bone marrow stromal cell fate and tissue regeneration in nanofibrous macroporous scaffolds by mediating vascularization Acta Biomater. 82 1–11

    [46] Bandyopadhyay A, Mitra I, Avila J D, Upadhyayula M and Bose S 2023 Porous metal implants: processing, properties, and challenges Int. J. Extrem. Manuf. 5 032014

    [47] Jeong W S, Kim Y C, Min J C, Park H J, Lee E J, Shim J H and Choi J W 2022 Clinical application of 3D-printed patient-specific polycaprolactone/beta tricalcium phosphate scaffold for complex zygomatico-maxillary defects Polymers 14 740

    [48] Feng P, Shen S P, Shuai Y, Peng S P, Shuai C J and Chen S J 2023 PLLA grafting draws GO from PGA phase to the interface in PLLA/PGA bone scaffold owing enhanced interfacial interaction Sustain. Mater. Technol. 35 e00566

    [49] Su J et al 2022 Three-dimensional printing of gyroid-structured composite bioceramic scaffolds with tuneable degradability Biomater. Adv. 133 112595

    [50] Storck J L, Ehrmann G, Uthoff J, Diestelhorst E, Blachowicz T and Ehrmann A 2022 Investigating inexpensive polymeric 3D printed materials under extreme thermal conditions Mater. Futures 1 015001

    [51] Zia A W, Liu R and Wu X B 2022 Structural design and mechanical performance of composite vascular grafts Bio-Des. Manuf. 5 757–85

    [52] Wang Q F, Ma Z Y, Wang Y, Zhong L N and Xie W J 2021 Fabrication and characterization of 3D printed biocomposite scaffolds based on PCL and zirconia nanoparticles Bio-Des. Manuf. 4 60–71

    [53] Niu P D, Li R D, Fan Z Q, Cao P, Zheng D, Wang M B, Deng C and Yuan T C 2023 Inhibiting cracking and improving strength for additive manufactured AlxCoCrFeNi high entropy alloy via changing crystal structure from BCC-to-FCC Addit. Manuf. 71 103584

    [54] Baldim V, Bedioui F, Mignet N, Margaill I and Berret J F 2018 The enzyme-like catalytic activity of cerium oxide nanoparticles and its dependency on Ce3+ surface area concentration Nanoscale 10 6971–80

    [55] Li Y, Sella C, Lema?tre F, Guille Collignon M, Thouin L and Amatore C 2013 Highly sensitive platinum-black coated platinum electrodes for electrochemical detection of hydrogen peroxide and nitrite in microchannel Electroanalysis 25 895–902

    [56] Sun H T, Zhang Y Y, Chen S Y, Wang R Z, Chen Q, Li J C, Luo Y, Wang X L and Chen H R 2020 Photothermal Fenton nanocatalysts for synergetic cancer therapy in the second near-infrared window ACS Appl. Mater. Interfaces 12 30145–54

    [57] Qian G W, Wang J Z, Yang L Y M, Zeng Z K, Zhao Z Y, Peng S P and Shuai C J 2023 A pH-responsive CaO2@ZIF-67 system endows a scaffold with chemodynamic therapy properties J. Mater. Sci. 58 1214–28

    [58] Jia C Y, Guo Y X and Wu F G 2022 Chemodynamic therapy via Fenton and Fenton-like nanomaterials: strategies and recent advances Small 18 2103868

    [59] Han X X, Huang J, Jing X X, Yang D Y, Lin H, Wang Z G, Li P and Chen Y 2018 Oxygen-deficient black titania for synergistic/enhanced sonodynamic and photoinduced cancer therapy at near infrared-II biowindow ACS Nano 12 4545–55

    [60] Xie X H et al 2021 A photothermal and self-induced Fenton dual-modal antibacterial platform for synergistic enhanced bacterial elimination Appl. Catal. B 295 120315

    [61] Xi D M et al 2020 NIR light-driving barrier-free group rotation in nanoparticles with an 88.3% photothermal conversion efficiency for photothermal therapy Adv. Mater. 32 1907855

    [62] Shao H F, Nian Z H, Jing Z L, Zhang T, Zhu J H, Li X, Gong Y P and He Y 2022 Additive manufacturing of hydroxyapatite bioceramic scaffolds with projection based 3D printing Chin. J. Mech. Eng. 1 100021

    [63] Guo W T, Wang X C, Yang C Y, Huang R K, Wang H and Zhao Y J 2022 Microfluidic 3D printing polyhydroxyalkanoates-based bionic skin for wound healing Mater. Futures 1 015401

    [64] Lee H, Lee M K, Han G, Kim H E, Song J H, Na Y, Yoon C B, Oh S, Jang T S and Jung H D 2022 Customizable design of multiple-biomolecule delivery platform for enhanced osteogenic responses via ‘tailored assembly system’ Bio-Des. Manuf. 5 451–64

    Cijun Shuai, Xiaoxin Shi, Feng Yang, Haifeng Tian, Pei Feng. Oxygen vacancy boosting Fenton reaction in bone scaffold towards fighting bacterial infection[J]. International Journal of Extreme Manufacturing, 2024, 6(1): 15101
    Download Citation