[1] EKINCI K L, ROUKES M L. Nanoelectromechanical systems [J]. Review of Scientific Instruments, 2005, 76(6):061101-1-12.
[2] BLENCOWE M P. Nanoelectromechanical systems [J]. Contemporary Physics, 2005, 46(4):249-264.
[3] EKINCI K L. Electromechanical transducers at the nanoscale: Actuation and sensing of motion in nanoelectromechanical systems (NEMS) [J]. Small, 2005,1(8-9):786-797.
[4] LI M, TANG H X, ROUKES M L. Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications [J]. Nature Nanotechnology , 2007, 2:114-120.
[5] LI X X, ONO T, WANG Y L, et al.. Study on ultra-thin NEMS cantilevers-high yield fabrication and size-effect on Young's modulus of silicon [C]. Fifteenth IEEE International Conference on Micro Electro Mechanical Systems, Technical Digest. 2002:427-430.
[6] HARLEY J A, KENNY T W. High-sensitivity piezoresistive cantilevers under 1 000 A thick [J]. Applied Physics Letters, 1999,75(2):289-291.
[7] YANG J, ONO T, ESASHI M. Mechanical behavior of ultrathin microcantilever [J]. Sensors and Actuators A, 2000,82(1-3):102-107.
[8] ALBRECH T R, GRUTTER P, HOME D, et al.. Frequency modulation detection using high-Q cantilevers for enhanced force microscope sensitivity [J]. Journal of Applied Physics, 1991,69(2):668-673.
[9] LI X X, ONO T, WANG Y L, et al.. Ultrathin single-crystalline-silicon cantilever resonators: Fabrication technology and significant specimen size effect on Young's modulus [J]. Applied Physics Letters , 2003,83(15):3081-3083.
[10] LAHAYE M D, BUU O, CAMAROTA B, et al.. Approaching the quantum limit of a nanomechanical resonator [J]. Science, 2004,304:74-77.
[11] BLENCOWE M. Nanomechanical quantum limits [J]. Science, 2004,304:56-57.
[12] GAO M, LIU Y X, WANG X B. Coupling rydberg atoms to superconducting qubits via nanomechanical resonator [J]. Physical Review A , 2011, 83(2):022309.
[13] YAN S P. Research of the electromechanical characteristics on silicon nanowire [D]. Hangzhou: Zhejiang University, 2011:65-66. (in Chinese)
[14] ZENG J Y. Quantum Mechanics [M]. Beijing: Science Press, 2007:1-12. (in Chinese)
[15] GUAN H. The Basis of Quantum Mechanics [M]. Beijing: Higher Education Press, 1999:81-91. (in Chinese)
[16] BAO M H. Micro Mechanical Transducers: Pressure Sensors, Accelerometers and Gyroscopes [M]. Netherlands: Elsevier Science:33-137.
[17] BLENCOWE M. Quantum electromechanical systems [J]. Physics Reports , 2004, 395(3):159-222.
[18] CINQUEGRANA C, MAJORANA E, RAPAGNANI P, et al.. Back-action-evading transducing scheme for cryogenic gravitational-wave antennas [J]. Physical Review D, 1993,48(2):448-465.
[19] BLENCOWE M P, WYBOURNE M N. Quantum squeezing of mechanical motion for micron-sized cantilevers [J]. Physica B, 2000,280(1-4):555-556.
[20] GRISHCHUK L P, SAZHIN M V. Squeezed quantum states of a harmonic-oscillator in the problem of detecting gravitational-waves [J]. Zh Eksp Teor Fiz, 1983, 84:1937-1950.
[21] XU Y, YAN S P, JIN Z H, et al.. Quantum squeezing effects of strained multilayer graphene NEMS [J]. Nanoscale Research Letters, 2011, 6(1):355.