• Optics and Precision Engineering
  • Vol. 30, Issue 10, 1203 (2022)
Mingna ZHANG1, Xiaoqi LÜ1,2,*, and Yu GU1
Author Affiliations
  • 1Key Laboratory of Rattern Recognition and Intelligent Image Processing, School of Information Engineering,Inner Mongolia University of Science and Technology, Baotou0400, China
  • 2School of Information Engineering, Inner Mongolia University of Technology, Hohhot010051, China
  • show less
    DOI: 10.37188/OPE.20223010.1203 Cite this Article
    Mingna ZHANG, Xiaoqi LÜ, Yu GU. Image registration based on residual mixed attention and multi-resolution constraints[J]. Optics and Precision Engineering, 2022, 30(10): 1203 Copy Citation Text show less
    Diagram of registration network model
    Fig. 1. Diagram of registration network model
    Architecture of MAMReg-Net network
    Fig. 2. Architecture of MAMReg-Net network
    Diagram of residual mixed attention
    Fig. 3. Diagram of residual mixed attention
    Structure of Mask branching
    Fig. 4. Structure of Mask branching
    Non-Local module
    Fig. 5. Non-Local module
    Images before and after preprocessing
    Fig. 6. Images before and after preprocessing
    Image of 12 examples of anatomical structures
    Fig. 7. Image of 12 examples of anatomical structures
    Samples registration result from test images
    Fig. 8. Samples registration result from test images
    Color overlay images before and after registration
    Fig. 9. Color overlay images before and after registration
    Registration results using different methods
    Fig. 10. Registration results using different methods
    Histogram of the average Dice score of the 12 anatomical structures on the test images
    Fig. 11. Histogram of the average Dice score of the 12 anatomical structures on the test images
    Histogram of the average ASD score of the 12 anatomical structures on the test images
    Fig. 12. Histogram of the average ASD score of the 12 anatomical structures on the test images
    Dice score boxplot of 12 anatomical structures in ablation experiment
    Fig. 13. Dice score boxplot of 12 anatomical structures in ablation experiment
    ASD score boxplot of 12 anatomical structures in ablation experiment
    Fig. 14. ASD score boxplot of 12 anatomical structures in ablation experiment
    MethodAverage DiceAverage ASD
    Affine0.614±0.0711.673±0.369
    SYN280.783±0.0480.866±0.142
    VoxelMorph170.804±0.0290.804±0.137
    MAMReg-Net0.817±0.0350.789±0.205
    Table 1. Registration accuracy of different methods
    Method

    Average registration

    time/s

    SYN2835
    Tensorflow-VoxelMorph170.74
    Pytorch-VoxelMorph0.16
    MAMReg-Net0.34
    Table 2. Comparison of registration time between different methods
    MethodAverage DiceAverage ASD
    Affine0.540±0.0351.951±0.281
    SYN280.740±0.0131.085±0.092
    VoxelMorph170.726±0.0201.179±0.115
    MAMReg-Net0.734±0.0251.162±0.163
    Table 3. Comparison of registration accuracy of ABIDE dataset
    MethodDiceASD
    BaseMulti-resolution-constraintResidual-attentionNon-local
    0.807±0.0380.836±0.211
    0.809±0.0360.819±0.200
    0.813±0.0380.805±0.213
    0.815±0.0380.800±0.217
    0.817±0.0350.789±0.205
    Table 4. Comparison of registration accuracy of ablation experiments
    Mingna ZHANG, Xiaoqi LÜ, Yu GU. Image registration based on residual mixed attention and multi-resolution constraints[J]. Optics and Precision Engineering, 2022, 30(10): 1203
    Download Citation