• Chinese Optics Letters
  • Vol. 23, Issue 2, 021401 (2025)
Yuchun Liu1,2, Jiajun Song1,*, Yujie Peng1,**, Enhao Li1..., Yingbin Long1, Jianyu Sun1,3, Liya Shen1,2, Yinfei Liu1,3, Junze Zhu1,3, Yuxin Leng1,3,*** and Zhizhan Xu1,2,3|Show fewer author(s)
Author Affiliations
  • 1Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
  • 3Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.3788/COL202523.021401 Cite this Article Set citation alerts
    Yuchun Liu, Jiajun Song, Yujie Peng, Enhao Li, Yingbin Long, Jianyu Sun, Liya Shen, Yinfei Liu, Junze Zhu, Yuxin Leng, Zhizhan Xu, "162.6 mJ high-energy and high-efficiency KTP optical parametric oscillator at 2 µm," Chin. Opt. Lett. 23, 021401 (2025) Copy Citation Text show less
    References

    [1] T. Sizyuk, A. Hassanein. Tuning laser wavelength and pulse duration to improve the conversion efficiency and performance of EUV sources for nanolithography. Phys. Plasmas, 27, 103507(2020).

    [2] Z. Y. Shi, Y. Yuan, W. P. Wang et al. Enhanced extreme ultraviolet conversion efficiency of a 2 µm laser-driven preformed tin-droplet target using short picosecond pre-pulses. Phys. Plasmas, 30, 043107(2023).

    [3] Y. Mostafa, L. Behnke, D. J. Engels et al. Production of 13.5 nm light with 5% conversion efficiency from 2 µm laser-driven tin microdroplet plasma. Appl. Phys. Lett., 123, 234101(2023).

    [4] W. Tao, C. Sun, B. Xue et al. The efficacy and safety of 2-µm continuous laser in the treatment of high-risk patients with benign prostatic hyperplasia. Lasers Med. Sci., 32, 351(2017).

    [5] G. D. Spiers, R. T. Menzies, J. Jacob et al. Atmospheric CO2 measurements with a 2 µm airborne laser absorption spectrometer employing coherent detection. Appl. Opt., 50, 2098(2011).

    [6] K. Li, C. Niu, C. Wu et al. Development of a 2 µm solid-state laser for lidar in the past decade. Sensors, 23, 7024(2023).

    [7] B. R. Zhao, B. Q. Yao, C. P. Qian et al. 231 W dual-end-pumped Ho:YAG MOPA system and its application to a mid-infrared ZGP OPO. Opt. Lett., 43, 5989(2018).

    [8] D. Lorenz, C. Romano, D. Panitzek et al. Three-stage MOPA 2 µm fiber laser for ZGP OPO pumping. Proc. SPIE, 11985, 119850H(2022).

    [9] H. Wang, L. L. Zhao, Z. Y. Li et al. A high-energy Ho:YLF MOPA system pumped by Tm: YAP lasers. Opt. Laser Technol., 169, 110074(2024).

    [10] A. Mamrashev, N. Nikolaev, V. Antsygin et al. Optical properties of KTP crystals and their potential for terahertz generation. Crystals, 8, 310(2018).

    [11] A. Hildenbrand, F. R. Wagner, J. Y. Natoli et al. Laser damage investigation in nonlinear crystals: study of KTiOPO4 (KTP) and RbTiOPO4 (RTP) crystals. Proc. SPIE, 6998, 699815(2008).

    [12] C. Li, L. Huang, S. Cai. Review of nanosecond optical parametric oscillators. Laser Technol., 27, 116(2003).

    [13] X. Wei, Y. Peng, W. Wang et al. 2 µm pulsed laser with 100 mJ intracavity KTP optical parametric oscillator. Chin. J. Lasers, 37, 2762(2010).

    [14] G. Y. He, J. Guo, Z. X. Jiao et al. High average-power 2 µm radiation generated by intracavity KTP OPO. Laser Phys. Lett., 12, 095402(2015).

    [15] J. L. Mei, K. Zhong, M. R. Wang et al. Widely-tunable high-repetition-rate terahertz generation in GaSe with a compact dual-wavelength KTP OPO around 2 µm. Opt. Express, 24, 23368(2016).

    [16] L. Behnke, R. Schupp, Z. Bouza et al. Extreme ultraviolet light from a tin plasma driven by a 2-µm-wavelength laser. Opt. Express, 29, 4475(2021).

    [17] L. Behnke, E. J. Salumbides, G. Göritz et al. High-energy parametric oscillator and amplifier pulsed light source at 2-µm. Opt. Express, 31, 24142(2023).

    [18] L. R. Marshall, A. Kaz. Eye-safe output from noncritically phase-matched parametric oscillators. J. Opt. Soc. Am. B, 10, 1730(1993).

    [19] K. Zhong, J. Q. Yao, D. G. Xu et al. Enhancement of terahertz wave difference frequency generation based on a compact walk-off compensated KTP OPO. Opt. Commun., 283, 3520(2010).

    [20] J. D. Bierlein, H. Vanherzeele. Potassium titanyl phosphate: properties and new applications. J. Opt. Soc. Am. B, 6, 622(1989).

    [21] S. J. Brosnan, R. L. Byer. Optical parametric oscillator threshold and linewidth studies. IEEE J. Quantum Electron., 15, 415(1979).

    Yuchun Liu, Jiajun Song, Yujie Peng, Enhao Li, Yingbin Long, Jianyu Sun, Liya Shen, Yinfei Liu, Junze Zhu, Yuxin Leng, Zhizhan Xu, "162.6 mJ high-energy and high-efficiency KTP optical parametric oscillator at 2 µm," Chin. Opt. Lett. 23, 021401 (2025)
    Download Citation