• Laser & Optoelectronics Progress
  • Vol. 60, Issue 10, 1010010 (2023)
Anneng Luo1, Haibin Wan1,2,*, Zhiwei Si1, and Tuanfa Qin1,2
Author Affiliations
  • 1School of Computer, Electronics and Information, Guangxi University, Nanning 530004, Guangxi , China
  • 2Guangxi Key Laboratory of Multimedia Communications and Network Technology, Nanning 530004, Guangxi , China
  • show less
    DOI: 10.3788/LOP220603 Cite this Article Set citation alerts
    Anneng Luo, Haibin Wan, Zhiwei Si, Tuanfa Qin. Detection Algorithm of Recyclable Garbage Based on Improved YOLOv5s[J]. Laser & Optoelectronics Progress, 2023, 60(10): 1010010 Copy Citation Text show less
    YOLOv5s network structure
    Fig. 1. YOLOv5s network structure
    Basic unit of ShuffleNet v2
    Fig. 2. Basic unit of ShuffleNet v2
    DW module unit
    Fig. 3. DW module unit
    Structure diagram. (a) Schematic of Neck fusion; (b) schematic of improved YOLOv5s overall network
    Fig. 4. Structure diagram. (a) Schematic of Neck fusion; (b) schematic of improved YOLOv5s overall network
    Statistic on number of labels in each class on the dataset
    Fig. 5. Statistic on number of labels in each class on the dataset
    Original image and image obtained by modules.(a) Original image; (b) image obtained by CBS module; (c) image obtained by S-b module
    Fig. 6. Original image and image obtained by modules.(a) Original image; (b) image obtained by CBS module; (c) image obtained by S-b module
    Comparison of indicators between the improved model and YOLOv5s in training process
    Fig. 7. Comparison of indicators between the improved model and YOLOv5s in training process
    Serial numbernParamsModuleConfigurationOutput size
    013520Focus[3,32,3]32×320×320
    113968S-b[32,64,2]64×160×160
    212528S-a[64,64,1]64×160×160
    3114080S-b[64,128,2]128×80×80
    4327456S-a[128,128,1]128×80×80
    5152736S-b[128,256,2]256×40×40
    63104064S-a[256,256,1]256×40×40
    71203776S-b[256,512,2]512×20×20
    81656896SPP[512,512,5,9,13]512×20×20
    91134912S-a[512,512,1]512×20×20
    Table 1. Configuration of backbone network structure and parameters
    BackboneNeckP /%R /%mAP_0.5 /%mAP_0.5∶0.95 /%Parameters /106Memory /MB
    89.3785.1892.0968.887.0913.7
    88.8589.4393.3668.104.088.03
    88.4189.1593.0371.405.6911.05
    90.1289.9594.0171.302.685.34
    Table 2. Ablation experiment data of general category
    ClassP /%R /%AP /%
    YOLOv5sProposed modelYOLOv5sProposed modelYOLOv5sProposed model
    Edible oil barrels9394.191.597.997.297.4
    Pop cans84.490.176.385.98991.8
    Cartons90.891.491.793.596.397.3
    Metal cans81.880.978.985.38488.7
    Beverage bottles77.381.774.476.282.986.1
    Plugs and wires82.686.567.678.280.688.2
    Book and paper94.79594.697.598.198.2
    Pans95.993.387.291.796.497.7
    Scissors97.290.489.693.397.195.2
    Bowls9697.810010099.399.5
    Table 3. Experimental data for ablation of individual class
    ModelP /%R /%mAP_0.5 /%Parameter /106Memory /MB
    Faster-RCNN(ResNet50)68.5094.1592.3228.3108.48
    YOLOv388.4774.2585.8361.9235.71
    YOLOv487.8385.6088.5063.9244.48
    YOLOv5s89.4085.2092.107.0913.70
    YOLOx-s92.1392.5394.408.9434.29
    Proposed model90.1289.9594.012.685.34
    Table 4. Comparison experiments with common models
    Image sizeModelPreprocessing time /msInference time /msNMS time /msFP time /ms
    640×640Yolov5s1.6182.310.1194
    Proposed model1.5160.29.9171.6
    512×512Yolov5s1.1123.39.2133.6
    Proposed model1.1108.28.8118.1
    416×416Yolov5s0.982.98.091.8
    Proposed model0.973.27.481.5
    320×320Yolov5s0.856.06.563.3
    Proposed model0.748.55.654.8
    Table 5. Comparison of processing time at Jeson Nano