[1] Sedlacek J A, Schwettmann A, Kübler H et al. Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances[J]. Nature Physics, 8, 819-824(2012).
[2] Fan H Q, Kumar S, Kübler H et al. Dispersive radio frequency electrometry using Rydberg atoms in a prism-shaped atomic vapor cell[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 49, 104004(2016).
[3] Kumar S, Fan H Q, Kübler H et al. Rydberg-atom based radio-frequency electrometry using frequency modulation spectroscopy in room temperature vapor cells[J]. Optics Express, 25, 8625-8637(2017).
[4] Kumar S, Fan H Q, Kübler H et al. Atom-based sensing of weak radio frequency electric fields using homodyne readout[J]. Scientific Reports, 7, 42981(2017).
[5] Simons M T, Gordon J A, Holloway C L et al. Using frequency detuning to improve the sensitivity of electric field measurements via electromagnetically induced transparency and Autler-Townes splitting in Rydberg atoms[J]. Applied Physics Letters, 108, 174101(2016).
[6] Jia F D, Yu Y H, Liu X B et al. Dispersive microwave electrometry using Zeeman frequency modulation spectroscopy of electromagnetically induced transparency in Rydberg atoms[J]. Applied Optics, 59, 8253-8258(2020).
[7] Liu X B, Jia F D, Zhang H Y et al. Using amplitude modulation of the microwave field to improve the sensitivity of Rydberg-atom based microwave electrometry[J]. AIP Advances, 11, 085127(2021).
[8] Li S H, Yuan J P, Wang L R. Improvement of microwave electric field measurement sensitivity via multi-carrier modulation in Rydberg atoms[J]. Applied Sciences, 10, 8110(2020).
[9] Liao K Y, Tu H T, Yang S Z et al. Microwave electrometry via electromagnetically induced absorption in cold Rydberg atoms[J]. Physical Review A, 101, 053432(2020).
[10] Chopinaud A, Pritchard J D. Optimal state choice for Rydberg-atom microwave sensors[J]. Physical Review Applied, 16, 024008(2021).
[11] Meyer D H, O’Brien C, Fahey D P et al. Optimal atomic quantum sensing using electromagnetically-induced-transparency readout[J]. Physical Review A, 104, 043103(2021).
[12] Holloway C L, Gordon J A, Schwarzkopf A et al. Sub-wavelength imaging and field mapping via electromagnetically induced transparency and Autler-Townes splitting in Rydberg atoms[J]. Applied Physics Letters, 104, 244102(2014).
[13] Anderson D A, Raithel G. Continuous-frequency measurements of high-intensity microwave electric fields with atomic vapor cells[J]. Applied Physics Letters, 111, 053504(2017).
[14] Jiao Y C, Han X X, Fan J B et al. Atom-based receiver for amplitude-modulated baseband signals in high-frequency radio communication[J]. Applied Physics Express, 12, 126002(2019).
[15] Wade C G, Šibalić N, de Melo N R et al. Real-time near-field terahertz imaging with atomic optical fluorescence[J]. Nature Photonics, 11, 40-43(2017).
[16] Wade C G, Marcuzzi M, Levi E et al. A terahertz-driven non-equilibrium phase transition in a room temperature atomic vapour[J]. Nature Communications, 9, 3567(2018).
[17] Downes L A, MacKellar A R, Whiting D J et al. Full-field terahertz imaging at kilohertz frame rates using atomic vapor[J]. Physical Review X, 10, 011027(2020).
[18] Cox K C, Meyer D H, Fatemi F K et al. Quantum-limited atomic receiver in the electrically small regime[J]. Physical Review Letters, 121, 110502(2018).
[19] Jing M Y, Hu Y, Ma J E et al. Atomic superheterodyne receiver based on microwave-dressed Rydberg spectroscopy[J]. Nature Physics, 16, 911-915(2020).
[20] Gordon J A, Simons M T, Haddab A H et al. Weak electric-field detection with sub-1 Hz resolution at radio frequencies using a Rydberg atom-based mixer[J]. AIP Advances, 9, 045030(2019).
[21] Simons M T, Haddab A H, Gordon J A et al. A Rydberg atom-based mixer: measuring the phase of a radio frequency wave[J]. Applied Physics Letters, 114, 114101(2019).
[22] Prajapati N, Robinson A K, Berweger S et al. Enhancement of electromagnetically induced transparency based Rydberg-atom electrometry through population repumping[J]. Applied Physics Letters, 119, 214001(2021).
[23] Li S H, Yuan J P, Wang L R et al. Enhanced microwave electric field measurement with cavity-assisted Rydberg electromagnetically induced transparency[J]. Frontiers in Physics, 10, 846687(2022).
[24] Peng Y D, Wang J L, Yang A H et al. Cavity-enhanced microwave electric field measurement using Rydberg atoms[J]. Journal of the Optical Society of America B, 35, 2272-2277(2018).
[25] Peng Y D, Wang J L, Li C et al. Enhanced microwave electrometry with intracavity anomalous dispersion in Rydberg atoms[J]. Optical and Quantum Electronics, 52, 1-10(2020).
[26] Yang A H, Zhou W P, Zhao S C et al. Enhanced measurement of microwave electric fields with collective Rabi splitting[J]. Journal of the Optical Society of America B, 37, 1664-1669(2020).
[27] Anderson D A, Paradis E G, Raithel G. A vapor-cell atomic sensor for radio-frequency field detection using a polarization-selective field enhancement resonator[J]. Applied Physics Letters, 113, 073501(2018).
[28] Holloway C L, Simons M T, Kautz M D et al. A quantum-based power standard: using Rydberg atoms for a SI-traceable radio-frequency power measurement technique in rectangular waveguides[J]. Applied Physics Letters, 113, 094101(2018).
[29] Meyer D H, Kunz P D, Cox K C. Waveguide-coupled Rydberg spectrum analyzer from 0 to 20 GHz[J]. Physical Review Applied, 15, 014053(2021).
[30] Holloway C L, Prajapati N, Artusio-Glimpse A B et al. Rydberg atom-based field sensing enhancement using a split-ring resonator[J]. Applied Physics Letters, 120, 204001(2022).
[31] Li Z H, Hao D S, Yang W H et al. Improvement of microwave detection sensitivity with atoms based on cavity enhancement effect[J]. Japanese Journal of Applied Physics, 61, 096002(2022).
[32] Jau Y Y, Carter T. Vapor-cell-based atomic electrometry for detection frequencies below 1 kHz[J]. Physical Review Applied, 13, 054034(2020).
[33] Holloway C L, Prajapati N, Sherman J A et al. Electromagnetically induced transparency based Rydberg-atom sensor for traceable voltage measurements[J]. AVS Quantum Science, 4, 034401(2022).
[34] Hu J L, Li H Q, Song R et al. Continuously tunable radio frequency electrometry with Rydberg atoms[J]. Applied Physics Letters, 121, 014002(2022).
[35] Du Y J, Cong N, Wei X G et al. Realization of multiband communications using different Rydberg final states[J]. AIP Advances, 12, 065118(2022).
[36] Cox K C, Meyer D H, Fatemi F K et al. Quantum-limited atomic receiver in the electrically small regime[J]. Physical Review Letters, 121, 110502(2018).
[37] Anderson D A, Sapiro R E, Gonçalves L F et al. Optical radio-frequency phase measurement with an internal-state Rydberg atom interferometer[J]. Physical Review Applied, 17, 044020(2022).
[38] Liu B, Zhang L H, Liu Z K et al. Highly sensitive measurement of a megahertz rf electric field with a Rydberg-atom sensor[J]. Physical Review Applied, 18, 014045(2022).
[39] Ding D S, Liu Z K, Shi B S et al. Enhanced metrology at the critical point of a many-body Rydberg atomic system[J]. Nature Physics, 18, 1447-1452(2022).
[40] Dixon K, Nickerson K, Booth D W et al. Rydberg-atom-based electrometry using a self-heterodyne frequency-comb readout and preparation scheme[J]. Physical Review Applied, 19, 034078(2023).
[41] Zhang L H, Liu Z K, Liu B et al. Rydberg microwave-frequency-comb spectrometer[J]. Physical Review Applied, 18, 014033(2022).
[42] Jia F D, Liu X B, Mei J et al. Span shift and extension of quantum microwave electrometry with Rydberg atoms dressed by an auxiliary microwave field[J]. Physical Review A, 103, 063113(2021).
[43] Fan H Q, Kumar S, Sedlacek J et al. Atom based RF electric field sensing[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 48, 202001(2015).
[45] Mao R Q, Lin Y, Yang K et al. A high-efficiency fiber-coupled Rydberg-atom integrated probe and its imaging applications[J]. IEEE Antennas and Wireless Propagation Letters, 22, 352-356(2023).
[46] Artusio-Glimpse A, Simons M T, Prajapati N et al. Modern RF measurements with hot atoms: a technology review of Rydberg atom-based radio frequency field sensors[J]. IEEE Microwave Magazine, 23, 44-56(2022).
[47] Holloway C L, Gordon J A, Jefferts S et al. Broadband Rydberg atom-based electric-field probe for SI-traceable, self-calibrated measurements[J]. IEEE Transactions on Antennas and Propagation, 62, 6169-6182(2014).
[48] Holloway C L, Simons M T, Gordon J A et al. Atom-based RF electric field metrology: from self-calibrated measurements to subwavelength and near-field imaging[J]. IEEE Transactions on Electromagnetic Compatibility, 59, 717-728(2017).
[49] Adams C S, Pritchard J D, Shaffer J P. Rydberg atom quantum technologies[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 53, 012002(2019).
[50] Meyer D H, Castillo Z A, Cox K C et al. Assessment of Rydberg atoms for wideband electric field sensing[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 53, 034001(2020).
[51] Cai M H, Xu Z S, You S H et al. Sensitivity improvement and determination of Rydberg atom-based microwave sensor[J]. Photonics, 9, 250(2022).