• Laser & Optoelectronics Progress
  • Vol. 60, Issue 11, 1106010 (2023)
He Hao*, Jun Kou, Xuanmiao Hong, Shiqiao Du..., Yuanyuan Huang, Guoqing Qin, Junchao Ma, Zhan Shi, Tong Wu, Meng Zhang, Hongwei Gao and Guilan Li**|Show fewer author(s)
Author Affiliations
  • Beijing Institute of Radio Measurement, Beijing , 100039, China
  • show less
    DOI: 10.3788/LOP230703 Cite this Article Set citation alerts
    He Hao, Jun Kou, Xuanmiao Hong, Shiqiao Du, Yuanyuan Huang, Guoqing Qin, Junchao Ma, Zhan Shi, Tong Wu, Meng Zhang, Hongwei Gao, Guilan Li. Radio Frequency Electric Field Measurement with Rydberg Atoms[J]. Laser & Optoelectronics Progress, 2023, 60(11): 1106010 Copy Citation Text show less
    References

    [1] Sedlacek J A, Schwettmann A, Kübler H et al. Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances[J]. Nature Physics, 8, 819-824(2012).

    [2] Fan H Q, Kumar S, Kübler H et al. Dispersive radio frequency electrometry using Rydberg atoms in a prism-shaped atomic vapor cell[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 49, 104004(2016).

    [3] Kumar S, Fan H Q, Kübler H et al. Rydberg-atom based radio-frequency electrometry using frequency modulation spectroscopy in room temperature vapor cells[J]. Optics Express, 25, 8625-8637(2017).

    [4] Kumar S, Fan H Q, Kübler H et al. Atom-based sensing of weak radio frequency electric fields using homodyne readout[J]. Scientific Reports, 7, 42981(2017).

    [5] Simons M T, Gordon J A, Holloway C L et al. Using frequency detuning to improve the sensitivity of electric field measurements via electromagnetically induced transparency and Autler-Townes splitting in Rydberg atoms[J]. Applied Physics Letters, 108, 174101(2016).

    [6] Jia F D, Yu Y H, Liu X B et al. Dispersive microwave electrometry using Zeeman frequency modulation spectroscopy of electromagnetically induced transparency in Rydberg atoms[J]. Applied Optics, 59, 8253-8258(2020).

    [7] Liu X B, Jia F D, Zhang H Y et al. Using amplitude modulation of the microwave field to improve the sensitivity of Rydberg-atom based microwave electrometry[J]. AIP Advances, 11, 085127(2021).

    [8] Li S H, Yuan J P, Wang L R. Improvement of microwave electric field measurement sensitivity via multi-carrier modulation in Rydberg atoms[J]. Applied Sciences, 10, 8110(2020).

    [9] Liao K Y, Tu H T, Yang S Z et al. Microwave electrometry via electromagnetically induced absorption in cold Rydberg atoms[J]. Physical Review A, 101, 053432(2020).

    [10] Chopinaud A, Pritchard J D. Optimal state choice for Rydberg-atom microwave sensors[J]. Physical Review Applied, 16, 024008(2021).

    [11] Meyer D H, O’Brien C, Fahey D P et al. Optimal atomic quantum sensing using electromagnetically-induced-transparency readout[J]. Physical Review A, 104, 043103(2021).

    [12] Holloway C L, Gordon J A, Schwarzkopf A et al. Sub-wavelength imaging and field mapping via electromagnetically induced transparency and Autler-Townes splitting in Rydberg atoms[J]. Applied Physics Letters, 104, 244102(2014).

    [13] Anderson D A, Raithel G. Continuous-frequency measurements of high-intensity microwave electric fields with atomic vapor cells[J]. Applied Physics Letters, 111, 053504(2017).

    [14] Jiao Y C, Han X X, Fan J B et al. Atom-based receiver for amplitude-modulated baseband signals in high-frequency radio communication[J]. Applied Physics Express, 12, 126002(2019).

    [15] Wade C G, Šibalić N, de Melo N R et al. Real-time near-field terahertz imaging with atomic optical fluorescence[J]. Nature Photonics, 11, 40-43(2017).

    [16] Wade C G, Marcuzzi M, Levi E et al. A terahertz-driven non-equilibrium phase transition in a room temperature atomic vapour[J]. Nature Communications, 9, 3567(2018).

    [17] Downes L A, MacKellar A R, Whiting D J et al. Full-field terahertz imaging at kilohertz frame rates using atomic vapor[J]. Physical Review X, 10, 011027(2020).

    [18] Cox K C, Meyer D H, Fatemi F K et al. Quantum-limited atomic receiver in the electrically small regime[J]. Physical Review Letters, 121, 110502(2018).

    [19] Jing M Y, Hu Y, Ma J E et al. Atomic superheterodyne receiver based on microwave-dressed Rydberg spectroscopy[J]. Nature Physics, 16, 911-915(2020).

    [20] Gordon J A, Simons M T, Haddab A H et al. Weak electric-field detection with sub-1 Hz resolution at radio frequencies using a Rydberg atom-based mixer[J]. AIP Advances, 9, 045030(2019).

    [21] Simons M T, Haddab A H, Gordon J A et al. A Rydberg atom-based mixer: measuring the phase of a radio frequency wave[J]. Applied Physics Letters, 114, 114101(2019).

    [22] Prajapati N, Robinson A K, Berweger S et al. Enhancement of electromagnetically induced transparency based Rydberg-atom electrometry through population repumping[J]. Applied Physics Letters, 119, 214001(2021).

    [23] Li S H, Yuan J P, Wang L R et al. Enhanced microwave electric field measurement with cavity-assisted Rydberg electromagnetically induced transparency[J]. Frontiers in Physics, 10, 846687(2022).

    [24] Peng Y D, Wang J L, Yang A H et al. Cavity-enhanced microwave electric field measurement using Rydberg atoms[J]. Journal of the Optical Society of America B, 35, 2272-2277(2018).

    [25] Peng Y D, Wang J L, Li C et al. Enhanced microwave electrometry with intracavity anomalous dispersion in Rydberg atoms[J]. Optical and Quantum Electronics, 52, 1-10(2020).

    [26] Yang A H, Zhou W P, Zhao S C et al. Enhanced measurement of microwave electric fields with collective Rabi splitting[J]. Journal of the Optical Society of America B, 37, 1664-1669(2020).

    [27] Anderson D A, Paradis E G, Raithel G. A vapor-cell atomic sensor for radio-frequency field detection using a polarization-selective field enhancement resonator[J]. Applied Physics Letters, 113, 073501(2018).

    [28] Holloway C L, Simons M T, Kautz M D et al. A quantum-based power standard: using Rydberg atoms for a SI-traceable radio-frequency power measurement technique in rectangular waveguides[J]. Applied Physics Letters, 113, 094101(2018).

    [29] Meyer D H, Kunz P D, Cox K C. Waveguide-coupled Rydberg spectrum analyzer from 0 to 20 GHz[J]. Physical Review Applied, 15, 014053(2021).

    [30] Holloway C L, Prajapati N, Artusio-Glimpse A B et al. Rydberg atom-based field sensing enhancement using a split-ring resonator[J]. Applied Physics Letters, 120, 204001(2022).

    [31] Li Z H, Hao D S, Yang W H et al. Improvement of microwave detection sensitivity with atoms based on cavity enhancement effect[J]. Japanese Journal of Applied Physics, 61, 096002(2022).

    [32] Jau Y Y, Carter T. Vapor-cell-based atomic electrometry for detection frequencies below 1 ‍kHz[J]. Physical Review Applied, 13, 054034(2020).

    [33] Holloway C L, Prajapati N, Sherman J A et al. Electromagnetically induced transparency based Rydberg-atom sensor for traceable voltage measurements[J]. AVS Quantum Science, 4, 034401(2022).

    [34] Hu J L, Li H Q, Song R et al. Continuously tunable radio frequency electrometry with Rydberg atoms[J]. Applied Physics Letters, 121, 014002(2022).

    [35] Du Y J, Cong N, Wei X G et al. Realization of multiband communications using different Rydberg final states[J]. AIP Advances, 12, 065118(2022).

    [36] Cox K C, Meyer D H, Fatemi F K et al. Quantum-limited atomic receiver in the electrically small regime[J]. Physical Review Letters, 121, 110502(2018).

    [37] Anderson D A, Sapiro R E, Gonçalves L F et al. Optical radio-frequency phase measurement with an internal-state Rydberg atom interferometer[J]. Physical Review Applied, 17, 044020(2022).

    [38] Liu B, Zhang L H, Liu Z K et al. Highly sensitive measurement of a megahertz rf electric field with a Rydberg-atom sensor[J]. Physical Review Applied, 18, 014045(2022).

    [39] Ding D S, Liu Z K, Shi B S et al. Enhanced metrology at the critical point of a many-body Rydberg atomic system[J]. Nature Physics, 18, 1447-1452(2022).

    [40] Dixon K, Nickerson K, Booth D W et al. Rydberg-atom-based electrometry using a self-heterodyne frequency-comb readout and preparation scheme[J]. Physical Review Applied, 19, 034078(2023).

    [41] Zhang L H, Liu Z K, Liu B et al. Rydberg microwave-frequency-comb spectrometer[J]. Physical Review Applied, 18, 014033(2022).

    [42] Jia F D, Liu X B, Mei J et al. Span shift and extension of quantum microwave electrometry with Rydberg atoms dressed by an auxiliary microwave field[J]. Physical Review A, 103, 063113(2021).

    [43] Fan H Q, Kumar S, Sedlacek J et al. Atom based RF electric field sensing[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 48, 202001(2015).

    [44] Santamaría-Botello G, Verploegh S, Bottomley E et al. Comparison of noise temperature of Rydberg-atom and electronic microwave receivers[EB/OL]. https://www.semanticscholar.org/reader/771646c68a61a79cee072197a7272dad09cff93f

    [45] Mao R Q, Lin Y, Yang K et al. A high-efficiency fiber-coupled Rydberg-atom integrated probe and its imaging applications[J]. IEEE Antennas and Wireless Propagation Letters, 22, 352-356(2023).

    [46] Artusio-Glimpse A, Simons M T, Prajapati N et al. Modern RF measurements with hot atoms: a technology review of Rydberg atom-based radio frequency field sensors[J]. IEEE Microwave Magazine, 23, 44-56(2022).

    [47] Holloway C L, Gordon J A, Jefferts S et al. Broadband Rydberg atom-based electric-field probe for SI-traceable, self-calibrated measurements[J]. IEEE Transactions on Antennas and Propagation, 62, 6169-6182(2014).

    [48] Holloway C L, Simons M T, Gordon J A et al. Atom-based RF electric field metrology: from self-calibrated measurements to subwavelength and near-field imaging[J]. IEEE Transactions on Electromagnetic Compatibility, 59, 717-728(2017).

    [49] Adams C S, Pritchard J D, Shaffer J P. Rydberg atom quantum technologies[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 53, 012002(2019).

    [50] Meyer D H, Castillo Z A, Cox K C et al. Assessment of Rydberg atoms for wideband electric field sensing[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 53, 034001(2020).

    [51] Cai M H, Xu Z S, You S H et al. Sensitivity improvement and determination of Rydberg atom-based microwave sensor[J]. Photonics, 9, 250(2022).

    [52] Ma L, Viray M A, Anderson D A et al. Measurement of DC and AC electric fields inside an atomic vapor cell with wall-integrated electrodes[EB/OL]. https://arxiv.org/abs/2106.01968

    He Hao, Jun Kou, Xuanmiao Hong, Shiqiao Du, Yuanyuan Huang, Guoqing Qin, Junchao Ma, Zhan Shi, Tong Wu, Meng Zhang, Hongwei Gao, Guilan Li. Radio Frequency Electric Field Measurement with Rydberg Atoms[J]. Laser & Optoelectronics Progress, 2023, 60(11): 1106010
    Download Citation