Shuai Fang, Jinming Wang, Fengyun Cao. Hyperspectral Image Unmixing Based on Constrained Nonnegative Matrix Factorization[J]. Laser & Optoelectronics Progress, 2019, 56(16): 161001

Search by keywords or author
- Laser & Optoelectronics Progress
- Vol. 56, Issue 16, 161001 (2019)

Fig. 1. Procedure of SSPP-CNMF algorithm

Fig. 2. Hyperspectral images. (a) Fractal1; (b) Jasper; (c) Cuprite

Fig. 3. Jasper ground truths (GT) and endmember results obtained by proposed algorithm. (a) Tree; (b) soil; (c) water; (d) road

Fig. 4. Ground truths of Jasper abundance. (a) Water; (b) soil; (c) road; (d) tree

Fig. 5. Jasper abundances estimated by VCA algorithm. (a) Water; (b) soil; (c) road; (d) tree

Fig. 6. Jasper abundances estimated by CoNMF algorithm. (a) Water; (b) soil; (c) road; (d) tree

Fig. 7. Jasper abundances estimated by MVC-NMF algorithm. (a) Water; (b) soil; (c) road; (d) tree

Fig. 8. Jasper abundances estimated by SSPP-VCA algorithm. (a) Water; (b) soil; (c) road; (d) tree

Fig. 9. Jasper abundances estimated by SSPP-CNMF algorithm. (a) Water; (b) soil; (c) road; (d) tree

Fig. 10. Fractal1 abundances estimated by SSPP-CNMF algorithm. (a) Halloysite; (b) Nontronite; (c) Kaolinite CM9; (d) Sphene; (e) Muscovite; (f) Kaolinite KGa1; (g) Dumortierite; (h) Pyrophyllite; (i) Alunite

Fig. 11. Fractal1 ground truth and endmember spectra estimated by SSPP-CNMF algorithm. (a) Dumortierite; (b) Halloysite; (c) Kaolinite CM9; (d) Kaolinite KGa1; (e) Muscovite; (f) Nontronite; (g) Pyrophyllite; (h) Sphene

Fig. 12. Cuprite abundances estimated by SSPP-CNMF algorithm. (a) Endmember 1;(b) Endmember 2; (c) Endmember 3; (d) Endmember 4; (e) Endmember 5; (f) Endmember 6; (g) Endmember 7; (h) Endmember 8; (i) Endmember 9; (j) Endmember 10; (k) Endmember 11; (l) Endmember 12
|
Table 1. Comparison of SAD of different hyperspectral unmixing algorithms
|
Table 2. Comparison of RMSE of different hyperspectral unmixing algorithms

Set citation alerts for the article
Please enter your email address