Lei Wang, Rui-Wen Xiao, Shi-Jun Ge, Zhi-Xiong Shen, Peng Lü, Wei Hu, Yan-Qing Lu. Research progress of terahertz liquid crystal materials and devices [J]. Acta Physica Sinica, 2019, 68(8): 084205-1

Search by keywords or author
- Acta Physica Sinica
- Vol. 68, Issue 8, 084205-1 (2019)
![Schematic diagram of electromagnetic spectrum and location of THz in electromagnetic spectrum with blue underline [8]电磁波谱示意图及THz在电磁波谱中的位置[8]](/Images/highlights-null.jpg)
Fig. 1. Schematic diagram of electromagnetic spectrum and location of THz in electromagnetic spectrum with blue underline [8]电磁波谱示意图及THz在电磁波谱中的位置[8]
![Frequency-dependent birefringence Δn and refractive indices: (a) Real part n; (b) imaginary part κ of NJU-LDn-4 [23]THz波段大双折射液晶的双折射和折射率 (a) 实部;(b) 虚部随频率的变化[23]](/Images/highlights-null.jpg)
Fig. 2. Frequency-dependent birefringence Δn and refractive indices: (a) Real part n ; (b) imaginary part κ of NJU-LDn-4 [23]THz波段大双折射液晶的双折射和折射率 (a) 实部;(b) 虚部随频率的变化[23]
![Tunable THz waveplate: (a) The cell is composed of a front fused silica substrate covered with a subwavelength metal wire grid and a rear fused silica substrate covered with porous graphene, both substrates are spin coated with SD1 alignment layers, and 250--thick Mylar is used to separate the two substrates, NJU-LDn-4 LCs are capillary filled into the cell; (b) UVO-treated and then SD1 spin-coated CVD-grown few-layer graphene films; (c) polarization evolution at 2.1 THz: linearly polarized at 0 V, elliptically polarized at 6 V, circularly polarized at 8.8 V, elliptically polarized at 20 V and linearly polarized at 50 V (orthogonal to the polarization at 0 V); (d) schematic illustration of the double-stacked cell [53]液晶THz波片 (a) 结构图;(b) 石墨烯传输特性;(c) 电调THz偏振态;(d) 双层液晶器件[53]](/Images/icon/loading.gif)
Fig. 3. Tunable THz waveplate: (a) The cell is composed of a front fused silica substrate covered with a subwavelength metal wire grid and a rear fused silica substrate covered with porous graphene, both substrates are spin coated with SD1 alignment layers, and 250-
-thick Mylar is used to separate the two substrates, NJU-LDn-4 LCs are capillary filled into the cell; (b) UVO-treated and then SD1 spin-coated CVD-grown few-layer graphene films; (c) polarization evolution at 2.1 THz: linearly polarized at 0 V, elliptically polarized at 6 V, circularly polarized at 8.8 V, elliptically polarized at 20 V and linearly polarized at 50 V (orthogonal to the polarization at 0 V); (d) schematic illustration of the double-stacked cell [53]液晶THz波片 (a) 结构图;(b) 石墨烯传输特性;(c) 电调THz偏振态;(d) 双层液晶器件[53]
![A reflective electrically controlled broadband tunable THz liquid crystal waveplate: (a) Schematic drawing; (b) polarization evolution (0−22 V) from linearly polarized to circularly polarized at 1.1 THz, to orthogonally linearly polarized at 2.2 THz[60]一种反射式电控宽带可调THz液晶波片 (a) 示意图;(b) 不同电压下的THz偏振态[60]](/Images/icon/loading.gif)
Fig. 4. A reflective electrically controlled broadband tunable THz liquid crystal waveplate: (a) Schematic drawing; (b) polarization evolution (0−22 V) from linearly polarized to circularly polarized at 1.1 THz, to orthogonally linearly polarized at 2.2 THz[60]一种反射式电控宽带可调THz液晶波片 (a) 示意图;(b) 不同电压下的THz偏振态[60]
 液晶光轴分布理论值;(b) q = 2的THz液晶q波片在正交偏振片下的照片, 标尺为1 mm;(c) 1 THz左旋圆偏振THz波经过该波片后所测强度和(d) 相位分布[62]](/Images/icon/loading.gif)
Fig. 5. (a) Theoretical optical axis distribution; (b) photo under crossed polarizers of the q-plate with q = 2, the scale bar is 1 mm; (c) the measured intensity, and (d) phase distributions of the transformed component at 1.0 THz with left circular incident polarization [62](a) 液晶光轴分布理论值;(b) q = 2的THz液晶q波片在正交偏振片下的照片, 标尺为1 mm;(c) 1 THz左旋圆偏振THz波经过该波片后所测强度和(d) 相位分布[62]
 液晶可调超材料吸收器单元;(b) 液晶在偏置电压下取向变化;(c) 吸收频率可调范围[64]](/Images/icon/loading.gif)
Fig. 6. (a) Rendering of a single unit cell of the liquid crystal metamaterial absorber; (b) depiction of the random alignment of liquid crystal in the unbiased case (right) and for an applied ac bias (left); (c) frequency dependent absorption A (w ) for 0 V (blue solid curve) and 4 V (red dashed curve) at f mod = 1 kHz, dashed line is centered at A max(V bias = 0) = 2.62 THz [64](a) 液晶可调超材料吸收器单元;(b) 液晶在偏置电压下取向变化;(c) 吸收频率可调范围[64]
![Liquid crystal tunable metamaterial/graphene absorber: (a) Schematic; (b) optical image of the metasurface (inset: a unit cell of the metasurface), P = 150 , lx = 120 , ly = 100 , w = 10 . Simulations of the static electric field and liquid crystal director distributions shown at a plane centered in the liquid crystal layer when the operating voltage is 10 V: (c) cross-shaped electrode; and (d) metamaterial/graphene electrode with the same metal ground. Tunability of the THz resonant frequencies and hot spots of the metamaterial absorber: (e) tunable absorption of TE and TM mode; (f) electric field of the corresponding points in (e) at a plane 1 above the cross-shaped metasurface. A, 0.864 THz, 0 V; B, 0.884 THz, 10 V; C, 0.742 THz, 10 V; D, 0.742 THz, 0 V. The orientation of liquid crystal is horizontal at 0 V while vertical at 10 V [74]一种石墨烯/超材料协同驱动的电控液晶可调THz波吸收器 (a) 结构示意图;(b) 十字超材料的显微图片;(c) 十字超材料电极驱动液晶指向矢分布;(d) 十字超材料和石墨烯复合电极驱动液晶指向矢分布;(e) 可调THz波吸收器的远场吸收特性和(f) 近场特性, A, 0.864 THz, 0 V; B, 0.884 THz, 10 V; C, 0.742 THz, 10 V; D, 0.742 THz, 0 V. 液晶方向在 0 V为平行, 在10 V为垂直[74]](/Images/icon/loading.gif)
Fig. 7. Liquid crystal tunable metamaterial/graphene absorber: (a) Schematic; (b) optical image of the metasurface (inset: a unit cell of the metasurface), P = 150
, lx = 120
, ly = 100
, w = 10
. Simulations of the static electric field and liquid crystal director distributions shown at a plane centered in the liquid crystal layer when the operating voltage is 10 V: (c) cross-shaped electrode; and (d) metamaterial/graphene electrode with the same metal ground. Tunability of the THz resonant frequencies and hot spots of the metamaterial absorber: (e) tunable absorption of TE and TM mode; (f) electric field of the corresponding points in (e) at a plane 1
above the cross-shaped metasurface. A, 0.864 THz, 0 V; B, 0.884 THz, 10 V; C, 0.742 THz, 10 V; D, 0.742 THz, 0 V. The orientation of liquid crystal is horizontal at 0 V while vertical at 10 V [74]一种石墨烯/超材料协同驱动的电控液晶可调THz波吸收器 (a) 结构示意图;(b) 十字超材料的显微图片;(c) 十字超材料电极驱动液晶指向矢分布;(d) 十字超材料和石墨烯复合电极驱动液晶指向矢分布;(e) 可调THz波吸收器的远场吸收特性和(f) 近场特性, A, 0.864 THz, 0 V; B, 0.884 THz, 10 V; C, 0.742 THz, 10 V; D, 0.742 THz, 0 V. 液晶方向在 0 V为平行, 在10 V为垂直[74]
![The active multifunctional terahertz metadevice: (a) Schematic illustration; (b) decomposition diagram of the device, the yellow arrows indicate the alignment direction; (c) the micrographs of the metasurface; (d) the comb electrode, inset in (c) shows the unit dimension of the resonator; p, lattice periodicity, 50 ; l, CRR length, 40 ; r, SRR length, 20 ; w, structure width, 3 ; g, gap, 4 ; and x, asymmetry distance, 11 ; the inset in (d) shows the polarization selectivity of the subwavelength grating; (e) black line reveals the electro-optical response of the device at 45 V; the blue line depicts the 1 kHz square-wave voltage signals[76]集成液晶的多功能THz超材料器件 (a) 示意图;(b) 分解图, 黄色箭头方向为液晶取向方向;(c) 超表面显微照片, 内插图为共振器的单位尺寸, p, 晶格周期, 50 ; l, CRR长度, 40 ; r, SRR长度, 20 ; w, 结构宽度, 3 ; g, 液晶层厚度, 4 ; x, 非对称距离, 11 ;(d) 梳状电极显微图和特性;(e) 器件响应时间实验测试[76]](/Images/icon/loading.gif)
Fig. 8. The active multifunctional terahertz metadevice: (a) Schematic illustration; (b) decomposition diagram of the device, the yellow arrows indicate the alignment direction; (c) the micrographs of the metasurface; (d) the comb electrode, inset in (c) shows the unit dimension of the resonator; p , lattice periodicity, 50
; l , CRR length, 40
; r , SRR length, 20
; w , structure width, 3
; g , gap, 4
; and x , asymmetry distance, 11
; the inset in (d) shows the polarization selectivity of the subwavelength grating; (e) black line reveals the electro-optical response of the device at 45 V; the blue line depicts the 1 kHz square-wave voltage signals[76]集成液晶的多功能THz超材料器件 (a) 示意图;(b) 分解图, 黄色箭头方向为液晶取向方向;(c) 超表面显微照片, 内插图为共振器的单位尺寸, p , 晶格周期, 50
; l , CRR长度, 40
; r , SRR长度, 20
; w , 结构宽度, 3
; g , 液晶层厚度, 4
; x , 非对称距离, 11
;(d) 梳状电极显微图和特性;(e) 器件响应时间实验测试[76]
 偏振可调的THz发射器结构图;(b) 铁磁异质结THz源工作原理图, 由飞秒激光脉冲作用铁磁异质结产生的自旋电流Js转化成面内电流Jc, 其沿x轴方向类似电偶极子, 发射出线偏振THz波, THz波偏振方向由磁场方向决定[77]](/Images/icon/loading.gif)
Fig. 9. (a) Schematic of the polarization-tunable THz emitter; a ferromagnetic heterostructure and a large birefringence liquid crystal are integrated in the emitter, the heterostructure acts as the THz source as well as the electrode on the front side, a few-layer porous graphene with a high transmittance is employed as the other electrode on the rear side; (b) the spin current J s launched by the laser pulse excitation is converted into the in-plane charge current J c due to the ISHE, the current J c along the x -axis act as an electric dipole, emitting linearly polarized THz waves into free space, the polarity of the THz waveform is determined by the direction of the magnetic field H and reverses together with it [77](a) 偏振可调的THz发射器结构图;(b) 铁磁异质结THz源工作原理图, 由飞秒激光脉冲作用铁磁异质结产生的自旋电流J s 转化成面内电流J c , 其沿x 轴方向类似电偶极子, 发射出线偏振THz波, THz波偏振方向由磁场方向决定[77]
 液晶电控反射阵天线结构单元示意图;(b) 增益与扫描角度关系[79]](/Images/icon/loading.gif)
Fig. 10. (a) Schematic of the liquid crystal-reflectarray, cells showing its different parts; (b) measured radiation patterns at 100 GHz of several scan angles[79](a) 液晶电控反射阵天线结构单元示意图;(b) 增益与扫描角度关系[79]
 基于CLC的THz成像卡; (b) 数字化处理后的THz波束[88]](/Images/icon/loading.gif)
Fig. 11. (a) CLC picture taken by a digital camera; (b) hue image digitalized from (a) [88](a) 基于CLC的THz成像卡; (b) 数字化处理后的THz波束[88]
 一种基于胶囊型CLC薄膜的可视化THz功率计结构示意图; (b) 在不同THz强度辐照下胶囊型CLC薄膜颜色变化情况; (c) 热平衡时THz功率与颜色变化区域直径的关系; (d) THz波辐照时间与颜色变化区域直径的关系[91]](/Images/icon/loading.gif)
Fig. 12. (a) Schematic and working principle of the capsulized CLC film, the inset shows a micrograph of the film, which is produced with a color 3D laser scanning microscope (VK-8710, KEYENCE, Osaka, Japan); (b) visible pictures are taken under different THz intensities by a smartphone camera with Bluetooth; (c) increase in the diameter of the color change with different THz powers in thermal equilibrium, similar to a dartboard shown in the inset; (d) increase in the diameters as a function of response time with 1.3 mW and 2.6 mW THz radiation, the inset shows image changes under different THz radiation times [91](a) 一种基于胶囊型CLC薄膜的可视化THz功率计结构示意图; (b) 在不同THz强度辐照下胶囊型CLC薄膜颜色变化情况; (c) 热平衡时THz功率与颜色变化区域直径的关系; (d) THz波辐照时间与颜色变化区域直径的关系[91]
|
Table 1. Large birefringence liquid crystal materials in THz range
Set citation alerts for the article
Please enter your email address