• Chinese Optics Letters
  • Vol. 23, Issue 3, 031103 (2025)
Pan Zhang1, Yuanyuan Liu1,2,*, and Qiwen Zhan1,2
Author Affiliations
  • 1School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
  • 2Zhangjiang Laboratory, Shanghai 201204, China
  • show less
    DOI: 10.3788/COL202523.031103 Cite this Article Set citation alerts
    Pan Zhang, Yuanyuan Liu, Qiwen Zhan, "Single frame memory-effect based bispectral analysis for high-resolution imaging through scattering media," Chin. Opt. Lett. 23, 031103 (2025) Copy Citation Text show less
    References

    [1] V. Kalchenko, A. Sdobnov, I. Meglinski et al. A robust method for adjustment of laser speckle contrast imaging during transcranial mouse brain visualization. Photonics, 6, 80(2019).

    [2] C. Moretti, S. Gigan. Readout of fluorescence functional signals through highly scattering tissue. Nat. Photonics, 14, 361(2020).

    [3] O. Katz, E. Small, Y. Silberberg. Looking around corners and through thin turbid layers in real time with scattered incoherent light. Nat. Photonics, 6, 549(2012).

    [4] L. Li, Y. Zheng, H. Liu et al. Reconstitution of optical orbital angular momentum through strongly scattering media via feedback-based wavefront shaping method. Chin. Opt. Lett., 19, 100101(2021).

    [5] Y. Wang, Y. Sheng, S. Liu et al. Wavelength-dependent nonlinear wavefront shaping in 3d nonlinear photonic crystal. Chin. Opt. Lett., 22, 071901(2024).

    [6] R. Horstmeyer, H. Ruan, C. Yang. Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue. Nat. Photonics, 9, 563(2015).

    [7] Z. Cheng, C. Li, A. Khadria et al. High-gain and high-speed wavefront shaping through scattering media. Nat. Photonics, 17, 299(2023).

    [8] E. Small, O. Katz, Y. Guan et al. Spectral control of broadband light through random media by wavefront shaping. Opt. Lett., 37, 3429(2012).

    [9] P. Lai, L. Wang, J. W. Tay et al. Photoacoustically guided wavefront shaping for enhanced optical focusing in scattering media. Nat. Photonics, 9, 126(2015).

    [10] N. Meitav, E. N. Ribak, S. Shoham. Point spread function estimation from projected speckle illumination. Light Sci. Appl., 5, e16048(2015).

    [11] D. Wang, S. K. Sahoo, X. Zhu et al. Non-invasive super-resolution imaging through dynamic scattering media. Nat. Commun., 12, 3150(2021).

    [12] X. Xie, H. Zhuang, H. He et al. Extended depth-resolved imaging through a thin scattering medium with PSF manipulation. Sci. Rep., 8, 4585(2018).

    [13] S. Mukherjee, A. Vijayakumar, J. Rosen. Spatial light modulator aided noninvasive imaging through scattering layers. Sci. Rep., 9, 17670(2019).

    [14] Y. Liang, C. Rao, M. Li et al. Iterative blind deconvolution of adaptive optics images. Chin. Opt. Lett., 4, 187(2006).

    [15] J. Bertolotti, E. G. V. Putten, C. Blum et al. Non-invasive imaging through opaque scattering layers. Nature, 491, 232(2012).

    [16] O. Katz, P. Heidmann, M. Fink et al. Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations. Nat. Photonics, 8, 784(2014).

    [17] L. Zhu, F. Soldevila, C. Moretti et al. Large field-of-view non-invasive imaging through scattering layers using fluctuating random illumination. Nat. Commun., 13, 1447(2022).

    [18] Y. Baek, H. B. de Aguiar, S. Gigan. Phase conjugation with spatially incoherent light in complex media. Nat. Photonics, 17, 1114(2023).

    [19] V. Tran, S. K. Sahoo, C. Dang. Fast 3D movement of a laser focusing spot behind scattering media by utilizing optical memory effect and optical conjugate planes. Sci. Rep., 9, 19507(2019).

    [20] J. Park, C. Park, K. Lee et al. Time-reversing a monochromatic subwavelength optical focus by optical phase conjugation of multiply-scattered light. Sci. Rep., 7, 41384(2017).

    [21] T. Chaigne, O. Katz, A. C. Boccara et al. Controlling light in scattering media non-invasively using the photoacoustic transmission matrix. Nat. Photonics, 8, 58(2014).

    [22] G. Ma, S. Zhao, X. Wang et al. Foveated imaging through scattering medium with lg-basis transmission matrix. Opt. Lasers Eng., 159, 107199(2022).

    [23] K. Lee, Y. Park. Exploiting the speckle-correlation scattering matrix for a compact reference-free holographic image sensor. Nat. Commun., 7, 13359(2016).

    [24] A. Boniface, J. Dong, S. Gigan. Non-invasive focusing and imaging in scattering media with a fluorescence-based transmission matrix. Nat. Commun., 11, 6154(2020).

    [25] I. Freund, M. Rosenbluh, S. Feng. Memory effects in propagation of optical waves through disordered media. Phys. Rev. Lett., 61, 2328(1988).

    [26] J. R. Fienup. Phase retrieval algorithms: a comparison. Appl. Optics, 21, 2758(1982).

    [27] H. Bartelt, A. W. Lohmann, B. Wirnitzer. Phase and amplitude recovery from bispectra. Appl. Optics, 23, 3121(1984).

    [28] J. D. Freeman, J. C. Christou, F. Roddier et al. Application of bispectrum analysis for phase recovery from one-dimensional infrared speckle data. JOSA A, 5, 406(1988).

    [29] T. Wu, O. Katz, X. Shao et al. Single-shot diffraction-limited imaging through scattering layers via bispectrum analysis. Opt. Lett., 41, 5003(2016).

    [30] Y. Wang, J. Cao, C. Xu et al. Moving target tracking and imaging through scattering media via speckle-difference-combined bispectrum analysis. IEEE Photonics J., 11, 6101514(2019).

    [31] Y. Han, H. Shen, F. Yuan et al. A single-shot scattering medium imaging method via bispectrum truncation. Sensors, 24, 2002(2024).

    [32] T. Matsuoka, T. J. Ulrych. Phase estimation using the bispectrum. Proc. IEEE, 72, 1403(1984).

    [33] B. M. Sadler, G. B. Giannakis. Shift-and rotation-invariant object reconstruction using the bispectrum. JOSA A, 9, 57(1992).

    [34] A. W. Lohmann, G. Weigelt, B. Wirnitzer. Speckle masking in astronomy: triple correlation theory and applications. Appl. Optics, 22, 4028(1983).

    [35] M. Northcott, G. Ayers, J. Dainty. Algorithms for image reconstruction from photon-limited data using the triple correlation. JOSA A, 5, 986(1988).

    [36] F. Dubois, C. Schockaert, N. Callens et al. Focus plane detection criteria in digital holography microscopy by amplitude analysis. Opt. Express, 14, 5895(2006).

    [37] S. K. Mohammed, L. Bouamama, D. Bahloul et al. Quality assessment of refocus criteria for particle imaging in digital off-axis holography. Appl. Optics, 56, 158(2017).

    [38] A. K. Jain. Fundamentals of Digital Image Processing(1989).

    [39] J. F. Brenner, B. S. Dew, J. B. Horton et al. An automated microscope for cytologic research a preliminary evaluation. J. Histochem. Cytochem., 24, 100(1976).

    [40] D. Marr, E. Hildreth. Theory of edge detection. Proc. R. Soc. B-Biol. Sci., 207, 187(1980).

    Pan Zhang, Yuanyuan Liu, Qiwen Zhan, "Single frame memory-effect based bispectral analysis for high-resolution imaging through scattering media," Chin. Opt. Lett. 23, 031103 (2025)
    Download Citation