[1] SUN G, FENG M, ZHANG K. Q-switched and mode-locked Er-doped fiber laser based on MAX phase Ti2AlC saturable absorber[J]. Results in physics, 2021, 26.
[2] JHON Y I, LEE J, JHON Y M. Ultrafast mode-locking in highly stacked Ti3C2Tx MXenes for 1.9-μm infrared femtosecond pulsed lasers[J]. Nanophotonics, 2021, 10(6): 1741-1751.
[3] SAKR H, CHEN Y, JASION G T. Hollow core optical fibres with comparable attenuation to silica fibres between 600 and 1100nm[J]. Nature communications, 2020, 11(1): 6030.
[4] NG E K, LAU K Y, LEE H K. Saturable absorber incorporating graphene oxide polymer composite through dip coating for mode-locked fiber laser[J]. Optical materials,2020, 100: 109619.
[5] RAMíREZ-MELéNDEZ G, BELLO-JIMéNEZ M, POTTIEZ O. Q-switching of an all-fiber ring laser based on in-fiber acousto-optic bandpass modulator[J]. Applied physics B, 2017, 123(9): 249.
[6] YOU J W, BONGU S R, BAO Q. Nonlinear optical properties and applications of 2D materials: theoretical and experimental aspects[J]. Nanophotonics, 2019, 8(1): 63-97.
[7] MARTINEZ A, AL ARAIMI M, DMITRIEV A. Low-loss saturable absorbers based on tapered fibers embedded in carbon nanotube/polymer composites[J]. APL photonics, 2017, 2(12): 126103.
[8] BOETTI N G, PUGLIESE D, CECI-GINISTRELLI E, et al. Highly doped phosphate glass fibers for compact lasers and amplifiers: a review[J]. Applied sciences-Basel,2017, 7(12): 1295.
[9] LIU X, GAO Q, ZHENG Y. Recent progress of pulsed fiber lasers based on transition-metal dichalcogenides and black phosphorus saturable absorbers[J]. Nanophotonics,2020, 9(8, SI): 2215-2231.
[10] AHMAD H, AIDIT S N, OOI I S. Mode-locked thulium-fluoride fibre laser with an adjustable pulse width using a nonlinear optical loop mirror[J]. Quantum electronics,2019, 49(2): 111-114.
[11] AHMAD H, AIDIT S N, HASSAN N A. Tunable mode-locked laser with micro-air gap cavity[J]. Optics and laser technology, 2017, 88: 222-225.
[12] CHERNYSHEVA M, ROZHIN A, FEDOTOV Y. Carbon nanotubes for ultrafast fibre lasers[J]. Nanophotonics,2017, 6(1): 1-30.
[13] EATEMADI A, DARAEE H, KARIMKHANLOO H.Carbon nanotubes: properties, synthesis, purification, and medical applications[J]. Nanoscale research letters, 2014, 9: 393.
[14] LAU K Y, HOU D. Recent research and advances of material-based saturable absorber in mode-locked fiber laser[J]. Optics and laser technology, 2021, 137(3): 106826.
[15] LIU W J, PANG L H, HAN H N. Tungsten disulfide saturable absorbers for 67 fs mode-locked erbium-doped fiber lasers[J]. Optics express, 2017, 25(3): 2950-2959.
[16] MA C, HUANG W, WANG Y. MXene saturable absorberenabled hybrid mode-locking technology: a new routine of advancing femtosecond fiber lasers performance[J].Nanophotonics, 2020, 9(8): 2451-2458.
[17] NAGUIB M, KURTOGLU M, PRESSER V. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Advanced materials, 2011, 23(37): 4248-4253.
[18] FENG J, LI X, FENG T. Harmonic mode-locked Er-doped fiber laser by evanescent field-based MXene Ti3C2Tx (T = F, O, or OH) saturable absorber[J]. Annalen der physik, 2020, 532(1): 1900437.
[19] CHING W Y, MO Y X, ARYAL S. Intrinsic mechanical properties of 20 MAX-phase compounds[J]. Journal of the American ceramic society, 2013, 96(7): 2292-2297.
[20] WANG L, LI X, WANG C. Few-layer Mxene Ti3C2Tx (T=F, O, or OH) for robust pulse generation in a compactEr-doped fiber laser[J]. Chemnanomat, 2019, 5(9): 1233-1238.
[21] HUANG W, MA C, LI C. Highly stable MXene (V2CTx)-based harmonic pulse generation[J]. Nanophotonics,2020, 9(8): 2577-2585.
[22] JAFRY A A A, KASIM N, RUSDI M F M. MAX phase based saturable absorber for mode-locked erbium-doped fiber laser[J]. Optics and laser technology, 2020, 127:106186.
[23] YING G, KOTA S, DILLON A D. Conductive transparent V2CTx (MXene) films[J]. Flatchem, 2018, 8: 25-30.
[24] LUO Z, HUANG Y, ZHONG M. 1-, 1.5-, and 2-μm fiber lasers Q-switched by a broadband few-layer MoS2 saturable absorber[J]. Journal of lightwave technology, 2014, 32(24): 4077-4084.
[25] LINDBERG R, BOGUS?AWSKI J, PASTERNAK I. Mapping mode-locking regimes in a polarization-maintaining Er-doped laser[J]. IEEE journal of selected topics in quantum electronics, 2018, 24(3): 1-9.
[26] WANG N, LU B L, QI X Y. Passively Q-switched ytterbium-doped fiber laser with ReSe2 saturable absorber[J]. Optics and laser technology, 2019, 116: 300-304.
[27] AHMAD H, AIDIT S N, OOI S I. Tunable passively Q-switched erbium-doped fiber laser with Chitosan/MoS2saturable absorber[J]. Optics & laser technology,2018, 103: 199-205.
[28] AHMAD H, ALBAQAWI H S M, YUSOFF N. Q-switched fiber laser at 1.5 μm region using Ti3AlC2 MAX phase-based saturable absorber[J]. IEEE journal of quantum electronics, 2020, 56(2): 1600106.
[29] AHMAD H, KAMELY A A, YUSOFF N, et al. Generation of Q-switched pulses in thulium-doped and thulium/holmium-co-doped fiber lasers using MAX phase (Ti3AlC2)[J]. Scientific reports, 2020, 10(1): 9233.
[30] AHMAD H, RAMLI R, YUSOFF N. 155 nm-wideband and tunable Q-switched fiber laser using an MXene Ti(3)C(2)T(X) coated microfiber based saturable absorber[J].Laser physics letters, 2020, 17(8).
[31] AHMAD H, ISMAIL N N, AIDIT S N. 2.08 μm Q-switched holmium fiber laser using niobium carbide-polyvinyl alcohol (Nb2C-PVA) as a saturable absorber[J].Optics communications, 2021, 490: 126888.