• Laser & Optoelectronics Progress
  • Vol. 60, Issue 12, 1228010 (2023)
Luobing Wu1, Yuhai Gu1,2,*, Wenhao Wu1, and Shuaixin Fan1
Author Affiliations
  • 1Key Laboratory of Modern Measurement and Control Technology, Ministry of Education, Beijing Information Science & Technology University, Beijing 100089, China
  • 2Mechanical Electrical Engineering School, Beijing Information Science & Technology University, Beijing 100089, China
  • show less
    DOI: 10.3788/LOP221716 Cite this Article Set citation alerts
    Luobing Wu, Yuhai Gu, Wenhao Wu, Shuaixin Fan. Remote Sensing Rotating Object Detection Based on Multi-Scale Feature Extraction[J]. Laser & Optoelectronics Progress, 2023, 60(12): 1228010 Copy Citation Text show less
    Structure diagram of CenterNet model
    Fig. 1. Structure diagram of CenterNet model
    Structure diagram of CenterNet-RS model
    Fig. 2. Structure diagram of CenterNet-RS model
    Schematic of principle and structure of receptive field expansion module. (a) Schematic of principle; (b) schematic of structure
    Fig. 3. Schematic of principle and structure of receptive field expansion module. (a) Schematic of principle; (b) schematic of structure
    Structure of adaptive feature fusion
    Fig. 4. Structure of adaptive feature fusion
    Presentation of DOTA dataset
    Fig. 5. Presentation of DOTA dataset
    Effect presentations of the CenterNet-RS on DOTA dataset
    Fig. 6. Effect presentations of the CenterNet-RS on DOTA dataset
    Structure of models in the ablation experiment
    Fig. 7. Structure of models in the ablation experiment
    ExperimentContent
    CPUIntel Core i5
    GPUNvidia RTX 2080 Ti
    RAM16 GB
    OSUbuntu 18.04
    PlantformCUDA 10.0
    LibraryPyTorch
    Table 1. Hardware and software environments for experimental and model construction
    ModelBackboneRotatable-HeadmAP /%Running time /s
    R2CNNVGG-1660.670.263
    ICNResNeXt10168.160.221
    CAD-NetResNet10169.900.172
    RoI-TransResNet10169.590.175
    BBAVectorsResNet10175.360.086
    CenterNetResNet101×63.560.072
    RetinaNetDLA-34×62.760.081
    CenterNet-RSResNet10173.010.078
    Table 2. Comparison of performance of CenterNet-RS and other models on DOTA dataset
    CategoryR2CNNICNCAD-NetRoI-TransBBA-VectorsCenterNet-RS
    mAP60.6768.1669.9069.5675.3673.01
    PL80.8981.3687.8088.6488.6392.37
    BD65.7574.3082.4078.5284.0674.86
    BR35.3447.7049.4043.4452.1350.42
    GTF67.4470.3273.5075.9269.5666.43
    SV59.9364.8971.1068.8178.2664.49
    LV50.9167.8263.5073.6880.4079.63
    SH55.8169.9876.7083.5988.0676.74
    TC90.6790.7690.9090.7490.8793.96
    BC66.9279.0679.2077.2787.2375.27
    ST72.3978.2073.3081.4686.3987.30
    SBF55.0653.6448.4058.3956.1162.72
    RA52.2362.9060.9053.5465.6269.16
    HA55.1467.0262.0062.8367.1066.76
    SP53.3564.1767.0058.9372.0859.60
    HC48.2250.2362.2047.6763.9656.05
    Table 3. AP of different algorithms detecting various objects on DOTA dataset
    MethodBackboneAPmAP
    CarAirplane
    R2CNN*VGG-1678.8989.7684.32
    ICNResNeXt10185.0290.3287.67
    CAD-NetResNet10188.3589.9389.14
    RoI-Trans*ResNet10187.9989.9088.95
    BBAVectorsResNet10190.2791.4190.84
    RetinaNet *DLA-3483.6489.5186.57
    CenterNetResNet10179.9090.6185.25
    CenterNet-RSResNet10189.3792.8291.10
    Table 4. AP of different algorithms detecting various objects on UCAS-AOD dataset
    CategoryCenterNetFPNFPN+ RFEMAFFRotatable-HeadFPN+Rotatable-HeadCenterNet-RS
    mAP63.4366.4468.9867.6467.0369.1473.01
    PL90.2091.2491.9490.8190.9991.1392.37
    BD68.1371.1273.4472.7569.7771.8674.86
    BR44.7247.2846.0145.1848.2349.8950.42
    GTF57.4959.9864.9862.9858.3959.9866.43
    SV54.4454.6956.4756.4463.8163.1664.49
    LV71.3775.7275.2972.3575.6779.1279.63
    SH66.3968.5469.9368.8073.9675.2176.74
    TC89.8290.5891.7993.7692.1792.0393.96
    BC63.2266.9071.5570.8669.9672.7475.27
    ST76.5984.2585.9886.7776.4583.2187.3
    SBF60.0561.1664.5659.8760.6160.8262.72
    RA62.8265.4867.6365.4364.9566.7169.16
    HA57.2860.2362.8363.6663.7665.8166.76
    SP47.9751.2657.6355.0050.9253.3159.60
    HC40.9348.1754.6849.9945.7252.0656.05
    Table 5. Comparison of AP values of different methods in ablation experiment
    Luobing Wu, Yuhai Gu, Wenhao Wu, Shuaixin Fan. Remote Sensing Rotating Object Detection Based on Multi-Scale Feature Extraction[J]. Laser & Optoelectronics Progress, 2023, 60(12): 1228010
    Download Citation