Author Affiliations
1Key Laboratory of Modern Measurement and Control Technology, Ministry of Education, Beijing Information Science & Technology University, Beijing 100089, China2Mechanical Electrical Engineering School, Beijing Information Science & Technology University, Beijing 100089, Chinashow less
Fig. 1. Structure diagram of CenterNet model
Fig. 2. Structure diagram of CenterNet-RS model
Fig. 3. Schematic of principle and structure of receptive field expansion module. (a) Schematic of principle; (b) schematic of structure
Fig. 4. Structure of adaptive feature fusion
Fig. 5. Presentation of DOTA dataset
Fig. 6. Effect presentations of the CenterNet-RS on DOTA dataset
Fig. 7. Structure of models in the ablation experiment
Experiment | Content |
---|
CPU | Intel Core i5 | GPU | Nvidia RTX 2080 Ti | RAM | 16 GB | OS | Ubuntu 18.04 | Plantform | CUDA 10.0 | Library | PyTorch |
|
Table 1. Hardware and software environments for experimental and model construction
Model | Backbone | Rotatable-Head | mAP /% | Running time /s |
---|
R2CNN | VGG-16 | √ | 60.67 | 0.263 | ICN | ResNeXt101 | √ | 68.16 | 0.221 | CAD-Net | ResNet101 | √ | 69.90 | 0.172 | RoI-Trans | ResNet101 | √ | 69.59 | 0.175 | BBAVectors | ResNet101 | √ | 75.36 | 0.086 | CenterNet | ResNet101 | × | 63.56 | 0.072 | RetinaNet | DLA-34 | × | 62.76 | 0.081 | CenterNet-RS | ResNet101 | √ | 73.01 | 0.078 |
|
Table 2. Comparison of performance of CenterNet-RS and other models on DOTA dataset
Category | R2CNN | ICN | CAD-Net | RoI-Trans | BBA-Vectors | CenterNet-RS |
---|
mAP | 60.67 | 68.16 | 69.90 | 69.56 | 75.36 | 73.01 | PL | 80.89 | 81.36 | 87.80 | 88.64 | 88.63 | 92.37 | BD | 65.75 | 74.30 | 82.40 | 78.52 | 84.06 | 74.86 | BR | 35.34 | 47.70 | 49.40 | 43.44 | 52.13 | 50.42 | GTF | 67.44 | 70.32 | 73.50 | 75.92 | 69.56 | 66.43 | SV | 59.93 | 64.89 | 71.10 | 68.81 | 78.26 | 64.49 | LV | 50.91 | 67.82 | 63.50 | 73.68 | 80.40 | 79.63 | SH | 55.81 | 69.98 | 76.70 | 83.59 | 88.06 | 76.74 | TC | 90.67 | 90.76 | 90.90 | 90.74 | 90.87 | 93.96 | BC | 66.92 | 79.06 | 79.20 | 77.27 | 87.23 | 75.27 | ST | 72.39 | 78.20 | 73.30 | 81.46 | 86.39 | 87.30 | SBF | 55.06 | 53.64 | 48.40 | 58.39 | 56.11 | 62.72 | RA | 52.23 | 62.90 | 60.90 | 53.54 | 65.62 | 69.16 | HA | 55.14 | 67.02 | 62.00 | 62.83 | 67.10 | 66.76 | SP | 53.35 | 64.17 | 67.00 | 58.93 | 72.08 | 59.60 | HC | 48.22 | 50.23 | 62.20 | 47.67 | 63.96 | 56.05 |
|
Table 3. AP of different algorithms detecting various objects on DOTA dataset
Method | Backbone | AP | mAP |
---|
Car | Airplane |
---|
R2CNN* | VGG-16 | 78.89 | 89.76 | 84.32 | ICN | ResNeXt101 | 85.02 | 90.32 | 87.67 | CAD-Net | ResNet101 | 88.35 | 89.93 | 89.14 | RoI-Trans* | ResNet101 | 87.99 | 89.90 | 88.95 | BBAVectors | ResNet101 | 90.27 | 91.41 | 90.84 | RetinaNet * | DLA-34 | 83.64 | 89.51 | 86.57 | CenterNet | ResNet101 | 79.90 | 90.61 | 85.25 | CenterNet-RS | ResNet101 | 89.37 | 92.82 | 91.10 |
|
Table 4. AP of different algorithms detecting various objects on UCAS-AOD dataset
Category | CenterNet | FPN | FPN+ RFEM | AFF | Rotatable-Head | FPN+Rotatable-Head | CenterNet-RS |
---|
mAP | 63.43 | 66.44 | 68.98 | 67.64 | 67.03 | 69.14 | 73.01 | PL | 90.20 | 91.24 | 91.94 | 90.81 | 90.99 | 91.13 | 92.37 | BD | 68.13 | 71.12 | 73.44 | 72.75 | 69.77 | 71.86 | 74.86 | BR | 44.72 | 47.28 | 46.01 | 45.18 | 48.23 | 49.89 | 50.42 | GTF | 57.49 | 59.98 | 64.98 | 62.98 | 58.39 | 59.98 | 66.43 | SV | 54.44 | 54.69 | 56.47 | 56.44 | 63.81 | 63.16 | 64.49 | LV | 71.37 | 75.72 | 75.29 | 72.35 | 75.67 | 79.12 | 79.63 | SH | 66.39 | 68.54 | 69.93 | 68.80 | 73.96 | 75.21 | 76.74 | TC | 89.82 | 90.58 | 91.79 | 93.76 | 92.17 | 92.03 | 93.96 | BC | 63.22 | 66.90 | 71.55 | 70.86 | 69.96 | 72.74 | 75.27 | ST | 76.59 | 84.25 | 85.98 | 86.77 | 76.45 | 83.21 | 87.3 | SBF | 60.05 | 61.16 | 64.56 | 59.87 | 60.61 | 60.82 | 62.72 | RA | 62.82 | 65.48 | 67.63 | 65.43 | 64.95 | 66.71 | 69.16 | HA | 57.28 | 60.23 | 62.83 | 63.66 | 63.76 | 65.81 | 66.76 | SP | 47.97 | 51.26 | 57.63 | 55.00 | 50.92 | 53.31 | 59.60 | HC | 40.93 | 48.17 | 54.68 | 49.99 | 45.72 | 52.06 | 56.05 |
|
Table 5. Comparison of AP values of different methods in ablation experiment