[1] Schawlow A L, Townes C H. Infrared and optical masers[J]. Physical Review, 112, 1940-1949(1958).
[2] Maiman T H. Stimulated optical radiation in ruby[J]. Nature, 187, 493-494(1960).
[3] Degen C L, Reinhard F, Cappellaro P. Quantum sensing[J]. Reviews of Modern Physics, 89, 035002(2017).
[4] Marr G, Creek D. The photoionization absorption continua for alkali metal vapours[J]. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 304, 233-244(1968).
[5] Miles R, Harris S. Optical third-harmonic generation in alkali metal vapors[J]. IEEE Journal of Quantum Electronics, 9, 470-484(1973).
[6] Skalla J, Wäckerle G, Mehring M et al. Optical magnetic resonance imaging of Rb vapor in low magnetic fields[J]. Physics Letters A, 226, 69-74(1997).
[7] Bell W E, Bloom A L. Optical detection of magnetic resonance in alkali metal vapor[J]. Physical Review, 107, 1559-1565(1957).
[8] Bhaskar N D, Camparo J, Happer W et al. Light narrowing of magnetic resonance lines in dense, optically pumped alkali-metal vapor[J]. Physical Review A, 23, 3048-3064(1981).
[9] Ranjbaran M, Tehranchi M M, Hamidi S M et al. Harmonic detection of magnetic resonance for sensitivity improvement of optical atomic magnetometers[J]. Journal of Magnetism and Magnetic Materials, 424, 284-290(2017).
[10] Liu G. Trispin dynamics in an alkali-metal-noble-gas nuclear-magnetic-resonance gyroscope[J]. Physical Review A, 99, 033409(2019).
[11] Liu G B. Trispin dynamics in an alkali-metal-noble-gas nuclear-magnetic-resonance gyroscope[J]. Physical Review A, 99, 033409(2019).
[12] Chu S. Nobel Lecture: the manipulation of neutral particles[J]. Reviews of Modern Physics, 70, 685-706(1998).
[13] Dalfovo F, Giorgini S, Pitaevskii L P et al. Theory of Bose-Einstein condensation in trapped gases[J]. Reviews of Modern Physics, 71, 463-512(1999).
[14] Jochim S, Bartenstein M, Altmeyer A et al. Bose-Einstein condensation of molecules[J]. Science, 302, 2101-2103(2003).
[15] Zwierlein M W, Stan C A, Schunck C H et al. Observation of Bose-Einstein condensation of molecules[J]. Physical Review Letters, 91, 250401(2003).
[16] Kominis I K, Kornack T W, Allred J C et al. A subfemtotesla multichannel atomic magnetometer[J]. Nature, 422, 596-599(2003).
[17] Johnson C, Schwindt P D D, Weisend M. Magnetoencephalography with a two-color pump-probe, fiber-coupled atomic magnetometer[J]. Applied Physics Letters, 97, 243703(2010).
[18] Kim K, Begus S, Xia H et al. Multi-channel atomic magnetometer for magnetoencephalography: a configuration study[J]. NeuroImage, 89, 143-151(2014).
[19] Chu P H, Kim Y J, Savukov I M. Search for exotic spin-dependent interactions with a spin-exchange relaxation-free magnetometer[J]. Physical Review D, 94, 036002(2016).
[20] Wang T, Kimball D F J, Sushkov A O et al. Application of spin-exchange relaxation-free magnetometry to the Cosmic Axion Spin Precession Experiment[J]. Physics of the Dark Universe, 19, 27-35(2018).
[21] Du P C, Li J J, Yang S J et al. Observing the steady-state visual evoked potentials with a compact quad-channel spin exchange relaxation-free magnetometer[J]. Chinese Physics B, 28, 040702(2019).
[22] Fan W F, Quan W, Zhang W J et al. Analysis on the magnetic field response for nuclear spin Co-magnetometer operated in spin-exchange relaxation-free regime[J]. IEEE Access, 7, 28574-28580(2019).
[23] Jodko-Władzińska A, Wildner K, Pałko T et al. Compensation system for biomagnetic measurements with optically pumped magnetometers inside a magnetically shielded room[J]. Sensors, 20, 4563(2020).
[24] Knappe S, Shah V, Schwindt P D D et al. A microfabricated atomic clock[J]. Applied Physics Letters, 85, 1460-1462(2004).
[25] Lu L, Tao G, Ke D et al. Frequency Stability of Atomic Clocks Based on Coherent Population Trapping Resonance in 85Rb[J]. Chinese Physics Letters, 24, 1883-1885(2007).
[26] Lutwak R. The chip-scale atomic clock-recent developments[C], 573-577(2009).
[27] Lutwak R, Rashed A, Varghese M et al. CSAC: the chip-scale atomic clock[M]. Maleki L. Frequency standards and metrology, 454-462(2009).
[28] Wang Z. Review of chip-scale atomic clocks based on coherent population trapping[J]. Chinese Physics B, 23, 030601(2014).
[29] Cash P, Krzewick W, Machado P et al. Microsemi Chip Scale Atomic Clock (CSAC) technical status, applications, and future plans[C], 65-71(2018).
[30] Jia S, Jiang Z Y, Jiao B B et al. The microfabricated alkali vapor cell with high hermeticity for chip-scale atomic clock[J]. Applied Sciences, 12, 436(2022).
[31] Lust L M, Youngner D W. Chip scale atomic gyroscope[P].
[32] Vasilakis G, Brown J M, Kornack T W et al. Limits on new long range nuclear spin-dependent forces set with a K-3He comagnetometer[J]. Physics Review Letters, 103, 261801(2009).
[33] Fang J C, Qin J. Advances in atomic gyroscopes: a view from inertial navigation applications[J]. Sensors, 12, 6331-6346(2012).
[34] Vasilakis G. Precision measurements of spin interactions with high density atomic vapors[D](2011).
[35] Li J D, Quan W, Zhou B Q et al. SERF atomic magnetometer-recent advances and applications: a review[J]. IEEE Sensors Journal, 18, 8198-8207(2018).
[36] Yang Y H, Chen D Y, Jin W et al. Investigation on rotation response of spin-exchange relaxation-free atomic spin gyroscope[J]. IEEE Access, 7, 148176-148182(2019).
[37] Xia H, Ben-Amar Baranga A, Hoffman D et al. Magnetoencephalography with an atomic magnetometer[J]. Applied Physics Letters, 89, 211104(2006).
[38] Sander T H, Preusser J, Mhaskar R et al. Magnetoencephalography with a chip-scale atomic magnetometer[J]. Biomedical Optics Express, 3, 981-990(2012).
[39] Das M,. Highly sensitive Rb magnetometer for neutron electric dipole moment experiments[D](2018).
[40] Chu P H, Kim Y J, Savukov I. Search for an axion-induced oscillating electric dipole moment for electrons using atomic magnetometers[J]. Physical Review D, 99, 075031(2019).
[41] Knappe S, Schwindt P, Shah V et al. A chip-scale atomic clock based on 87Rb with improved frequency stability[J]. Optics Express, 13, 1249-1253(2005).
[42] Carlé C, Petersen M, Passilly N et al. Exploring the use of Ramsey-CPT spectroscopy for a microcell-based atomic clock[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 68, 3249-3256(2021).
[43] Xing L, Wang Z, Huang J et al. Laser intensity stabilization control for an atomic spin gyroscope[C], 735-738(2018).
[44] Fan W F, Quan W, Liu F et al. Suppression of the bias error induced by magnetic noise in a spin-exchange relaxation-free gyroscope[J]. IEEE Sensors Journal, 19, 9712-9721(2019).
[45] Wang Y Z, Fu Y Q, Lin Y et al. Design and simulation of optical metasurface integrated atomic vapor cell[J]. Laser & Optoelectronics Progress, 59, 1124001(2022).
[46] Happer W. Optical pumping[J]. Reviews of Modern Physics, 44, 169-249(1972).
[47] Byron F W, Foley H M. Theory of collision broadening in the sudden approximation[J]. Physical Review, 134, A625-A637(1964).
[48] Barrat J P. Étude de la diffusion multiple cohérente de la lumière de résonance optique. Application au niveau 6 P1 du mercure.-I. Étude théorique. (1re partie)[J]. Journal De Physique et Le Radium, 20, 541-548(1959).
[49] Purcell E M, Field G B. Influence of collisions upon population of hyperfine states in hydrogen[J]. The Astrophysical Journal Letters, 124, 542(1956).
[50] Greenhow R C. Optical pumping in He3[J]. Physical Review, 136, A660-A662(1964).
[51] Bernheim R A. Spin relaxation in optical pumping[J]. The Journal of Chemical Physics, 36, 135-140(1962).
[52] Herman R M. Theory of spin exchange between optically pumped rubidium and foreign gas nuclei[J]. Physical Review, 137, A1062-A1065(1965).
[53] Cohen-Tannoudji C. Relaxation quadrupolaire de l’isotope 201Hg sur des parois de quartz[J]. Journal De Physique, 24, 653-660(1963).
[54] Schearer L D, Walters G K. Nuclear spin-lattice relaxation in the presence of magnetic-field gradients[J]. Physical Review, 139, A1398-A1402(1965).
[55] Gamblin R L, Carver T R. Polarization and relaxation processes in He3 gas[J]. Physical Review, 138, A946-A960(1965).
[56] Alfred K. Quelques suggestions concernant la production optique et la détection optique d'une inégalité de population des niveaux de quantifigation spatiale des atomes. Application à l'expérience de Stern et Gerlach et à la résonance magnétique[J]. J. Phys. Radium, 11, 255-265(1950).
[57] Masnou-Seeuws F, Bouchiat M A. Étude théorique de la relaxation d'atomes alcalins par collisions sur une paroi et sur un gaz[J]. Journal de Physique Archives(Paris), 28, 406-420(1967).
[58] Appelt S, Baranga A B A, Erickson C J et al. Theory of spin-exchange optical pumping of 3He and 129Xe[J]. Physical Review A, 58, 1412-1439(1998).
[59] Wu Z N, Zhao Z Q, Wen Z P et al. Research progress on high sensitivity and miniature optical-atomic magnetometer[J]. Laser & Optoelectronics Progress, 57, 230002(2020).
[60] Happer W, Tam A C. Effect of rapid spin exchange on the magnetic-resonance spectrum of alkali vapors[J]. Physical Review A, 16, 1877-1891(1977).
[61] Regan B C, Commins E D, Schmidt C J et al. New limit on the electron electric dipole moment[J]. Physical Review Letters, 88, 071805(2002).
[62] Seltzer S J. Developments in alkali-metal atomic magnetometry[D](2008).
[63] Brown J M, Smullin S J, Kornack T W et al. New limit on Lorentz- and CPT-violating neutron spin interactions[J]. Physical Review Letters, 105, 151604(2010).
[64] Smiciklas M, Brown J M, Cheuk L W et al. New test of local Lorentz invariance using a 21Ne-Rb-K comagnetometer[J]. Physical Review Letters, 107, 171604(2011).
[65] Happer W, Tang H. Spin-exchange shift and narrowing of magnetic resonance lines in optically pumped alkali vapors[J]. Physical Review Letters, 31, 273-276(1973).
[66] Allred J C, Lyman R N, Kornack T W et al. High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation[J]. Physical Review Letters, 89, 130801(2002).
[67] Huang S J, Zhang G Y, Hu Z H et al. Human magnetoencephalography measurement by highly sensitive SERF atomic magnetometer[J]. Chinese Journal of Lasers, 45, 1204006(2018).
[68] Lu F, Lu J X, Li B et al. Triaxial vector operation in near-zero field of atomic magnetometer with femtotesla sensitivity[J]. IEEE Transactions on Instrumentation and Measurement, 71, 1501210(2022).
[69] Osborne J, Orton J, Alem O et al. Fully integrated standalone zero field optically pumped magnetometer for biomagnetism[J]. Proceedings of SPIE, 10548, 105481G(2018).
[70] Boto E, Meyer S S, Shah V et al. A new generation of magnetoencephalography: room temperature measurements using optically-pumped magnetometers[J]. NeuroImage, 149, 404-414(2017).
[71] Gusarov A, Levron D, Paperno E et al. Three-dimensional magnetic field measurements in a single SERF atomic-magnetometer cell[J]. IEEE Transactions on Magnetics, 45, 4478-4481(2009).
[72] Dang H B, Maloof A C, Romalis M V. Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer[J]. Applied Physics Letters, 97, 151110(2010).
[73] Wyllie R, Kauer M, Smetana G S et al. Magnetocardiography with a modular spin-exchange relaxation-free atomic magnetometer array[J]. Physics in Medicine and Biology, 57, 2619-2632(2012).
[74] Boto E, Holmes N, Leggett J et al. Moving magnetoencephalography towards real-world applications with a wearable system[J]. Nature, 555, 657-661(2018).
[75] Zhivun E, Bulatowicz M, Hryciuk A et al. Dual-axis π-pulse magnetometer with suppressed spin-exchange relaxation[J]. Physical Review Applied, 11, 034040(2019).
[76] Ledbetter M P, Savukov I M, Acosta V M et al. Spin-exchange-relaxation-free magnetometry with Cs vapor[J]. Physical Review A, 77, 033408(2008).
[77] Fang J C, Wan S G, Qin J et al. Spin-exchange relaxation-free magnetic gradiometer with dual-beam and closed-loop Faraday modulation[J]. Journal of the Optical Society of America B, 31, 512-516(2014).
[78] Fang J C, Wang T, Zhang H et al. Optimizations of spin-exchange relaxation-free magnetometer based on potassium and rubidium hybrid optical pumping[J]. Review of Scientific Instruments, 85, 123104(2014).
[79] Li Y, Liu X J, Cai H W et al. Optimization of the alkali-metal density ratio in a hybrid optical pumping atomic magnetometer[J]. Measurement Science and Technology, 30, 015005(2019).
[80] Schwindt P D D, Lindseth B, Knappe S et al. Chip-scale atomic magnetometer with improved sensitivity by use of the Mx technique[J]. Applied Physics Letters, 90, 081102(2007).
[81] Boto E, Shah V, Hill R M et al. Triaxial detection of the neuromagnetic field using optically-pumped magnetometry: feasibility and application in children[J]. NeuroImage, 252, 119027(2022).
[82] Sebbag Y, Talker E, Naiman A et al. Demonstration of an integrated nanophotonic chip-scale alkali vapor magnetometer using inverse design[J]. Light: Science & Applications, 10, 54(2021).
[83] Cyr N, Tetu M, Breton M. All-optical microwave frequency standard: a proposal[J]. IEEE Transactions on Instrumentation and Measurement, 42, 640-649(1993).
[84] Castagna N, Boudot R, Guerandel S et al. Investigations on continuous and pulsed interrogation for a CPT atomic clock[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 56, 246-253(2009).
[85] Miletic D, Affolderbach C, Hasegawa M et al. AC Stark-shift in CPT-based Cs miniature atomic clocks[J]. Applied Physics B, 109, 89-97(2012).
[86] Abdel Hafiz M, Boudot R. A coherent population trapping Cs vapor cell atomic clock based on push-pull optical pumping[J]. Journal of Applied Physics, 118, 124903(2015).
[87] Abdel Hafiz M, Coget G, Yun P et al. A high-performance Raman-Ramsey Cs vapor cell atomic clock[J]. Journal of Applied Physics, 121, 104903(2017).
[88] Hafiz M A, Coget G, Petersen M et al. Toward a high-stability coherent population trapping Cs vapor-cell atomic clock using autobalanced Ramsey spectroscopy[J]. Physical Review Applied, 9, 064002(2018).
[89] Alzetta G, Gozzini A, Moi L et al. An experimental method for the observation of r.f. transitions and laser beat resonances in oriented Na vapour[J]. Il Nuovo Cimento B (1971-1996), 36, 5-20(1976).
[90] Gray H R, Whitley R M, Stroud C R,. Coherent trapping of atomic populations[J]. Optics Letters, 3, 218-220(1978).
[91] Levi F, Calosso C, Micalizio S et al. CPT maser clock evaluation for Galileo[C], 233-238(2004).
[92] Vanier J, Levine M W, Janssen D et al. The coherent population trapping passive frequency standard [Rb example][J]. IEEE Transactions on instrumentation and measurement, 52, 258-262(2003).
[93] Knappe S, Wynands R, Kitching J et al. Characterization of coherent population-trapping resonances as atomic frequency references[J]. Journal of the Optical Society of America B, 18, 1545-1553(2001).
[94] Danet J M, Lours M, Yun P et al. Frequency instability investigations on a Cs cell clock based on pulsed coherent population trapping[C], 586-589(2013).
[95] Abdel Hafiz M, Coget G, Petersen M et al. Symmetric autobalanced Ramsey interrogation for high-performance coherent-population-trapping vapor-cell atomic clock[J]. Applied Physics Letters, 112, 244102(2018).
[96] Kornack T W, Ghosh R K, Romalis M V. Nuclear spin gyroscope based on an atomic comagnetometer[J]. Physical Review Letters, 95, 230801(2005).
[97] Vasilakis G, Brown J M, Kornack T W et al. Limits on new long range nuclear spin-dependent forces set with a K-3He comagnetometer[J]. Physical Review Letters, 103, 261801(2009).
[98] Fang J C, Qin J, Wan S G et al. Atomic spin gyroscope based on 129Xe-Cs comagnetometer[J]. Chinese Science Bulletin, 58, 1512-1515(2013).
[99] Savukov I M, Romalis M V. NMR detection with an atomic magnetometer[J]. Physical Review Letters, 94, 123001(2005).
[100] Vliegen E, Kadlecek S, Anderson L W et al. Faraday rotation density measurements of optically thick alkali metal vapors[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 460, 444-450(2001).
[101] Quan W, Shen K S, Zhai Y Y et al. Precision measurements of optically thick alkali metal number density within a hybrid alkali metal cell[J]. Applied Optics, 57, 5714-5719(2018).
[102] Li Z M, Wakai R T, Walker T G. Parametric modulation of an atomic magnetometer[J]. Applied Physics Letters, 89, 134105(2006).
[103] Ding Z Y, Han B C, Tang J J. Single-beam miniaturized atomic magnetometer with square-wave modulation for magnetoencephalography[J]. IEEE Transactions on Instrumentation and Measurement, 70, 4002206(2021).
[104] Korver A, Wyllie R, Lancor B et al. Suppression of spin-exchange relaxation using pulsed parametric resonance[J]. Physical Review Letters, 111, 043002(2013).
[105] Karlen S, Buchs G, Overstolz T et al. MEMS atomic vapor cells for gyroscope applications[C], 315-316(2017).
[106] Chen Y, Yu M Z, Ma Y T et al. Micro-fabricated alkali vapor cells for atomic spin gyroscope study[C], 282-285(2021).
[107] Yim S H, Lee D Y, Lee S et al. Experimental setup to fabricate Rb-Xe gas cells for atom spin gyroscopes[J]. AIP Advances, 12, 015025(2022).
[108] Noor R M, Shkel A M. MEMS components for NMR atomic sensors[J]. Journal of Microelectromechanical Systems, 27, 1148-1159(2018).
[109] Zhang X F, Fan J J, Li Z P et al. MEMS gyroscopes development and application overview on intelligent vehicles[C], 53-59(2020).
[110] Bevan D, Bulatowicz M, Clark P et al. Nuclear magnetic resonance gyroscope: developing a primary rotation sensor[C](2018).
[111] Riedrich-Möller J, Cipolletti R, Schmid M et al. Nuclear spin precession in MEMS vapour cells-key element of a nuclear magnetic resonance gyroscope[C](2021).