• Optical Communication Technology
  • Vol. 48, Issue 1, 46 (2024)
MO Qiaoling
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.13921/j.cnki.issn1002-5561.2024.01.09 Cite this Article
    MO Qiaoling. Accuracy comparison of spectrum fitting algorithms based on Lorentzian model and pseudo-Voigt model[J]. Optical Communication Technology, 2024, 48(1): 46 Copy Citation Text show less
    References

    [1] MOTIL A, BERGMAN A, TUR M. State of the art of Brillouin fiber-optic distributed sensing [J]. Optics & Laser Technology, 2016, 78: 81-103.

    [2] CHENG L, MAO H, PAN P, et al. Experimental verification research of pipeline deflection deformation monitoring method based on distributed optical fiber measured strain [J]. Measurement, 2022, 199: 111483-1-111483-12.

    [6] MARAVAL D, GABET R, JAOUEN Y, et al. Dynamic optical fiber sensing with Brillouin optical time domain reflectometry: application to pipeline vibration monitoring [J]. Journal of Lightwave Technology, 2017, 35(16): 3296-3302.

    [7] MINARDO A, PORCARO G, GIANNETTA D, et al. Real-time monitoring of railway traffic using slope-assisted Brillouin distributed sensors [J]. Applied Optics, 2013, 52(16): 3770-3776.

    [8] BAO X, CHEN L. Recent progress in Brillouin scattering based fiber sensors [J]. Sensors, 2011, 11(4): 4152-4187.

    [9] XU Z N, HU Z W, ZHAO L J, et al. Application of temperature field modeling in monitoring of optic-electric composite submarine cable with insulation degradation [J]. Measurement, 2019, 133: 479-494.

    [10] HAO Y, LIU N, KUN Y, et al. Online ice-coating monitoring research on overhead transmission lines with Brillouin optical time domain reflectometry [J]. Optical Fiber Technology, 2020, 60: 102339-1-102339-5.

    [11] HORIGUCHI T, SHIMIZU K, KURASHIMA T, et al. Development of a distributed sensing technique using Brillouin scattering [J]. Journal of Lightwave Technology, 1995, 13(7): 1296-1302.

    [12] SUN X, HONG X, WANG S, et al. Frequency shift estimation technique near the hotspot in BOTDA sensor [J]. Optics Express, 2019, 27(9): 12899-12913.

    [13] WANG B, LIANG W, NAN G, et al. Deep neural networks assisted BOTDA for simultaneous temperature and strain measurement with enhanced accuracy [J]. Optics Express, 2019, 27(3): 2530-2543.

    [14] KWON H, KIM S, YEOM S, et al. Analysis of nonlinear fitting methods for distributed measurement of temperature and strain over 36 km optical fiber based on spontaneous Brillouin backscattering [J]. Optics Communications, 2013, 294: 59-63.

    [15] MA Y, LI H, GU Z, et al. Analysis of Rayleigh-Brillouin spectral profiles and Brillouin shifts in nitrogen gas and air-psedo-Voigt [J]. Optics Express, 2014, 22(2): 2092-2104.

    [16] ZHANG Y, YU C, FU X, et al. An improved Newton algorithm based on finite element analysis for extracting the Brillouin scattering spectrum features [J]. Measurement, 2014, 51: 310-314.

    [17] BAO X, BROWN A, DEMERCHANT M, et al. Characterization of the Brillouin-loss spectrum of single-mode fibers by use of very short (<10-ns) pulses[J]. Optics Letters, 1999, 24(8): 510-512.

    [18] NARUSE H, TATEDA M, OHNO H, et al. Dependence of the Brillouin gain spectrum on linear strain distribution for optical time-domain reflectometer-type strain sensors [J]. Applied Optics, 2002, 41(34): 7212-7217.

    [19] XU Z N, HU Z W, ZHAO L J, et al. Optimal frequency scanning range for parameters extraction from Brillouin scattering spectrum [J]. Optik, 2018, 158: 1380-1393.

    [20] PANNELL C N, DHLIWAYO J, WEBB D J. The accuracy of parameter estimation from noisy data, with application to resonance peak estimation in distributed Brillouin sensing[J]. Measurement Science and Technology, 1998, 9(1): 50-57.

    [21] XU Z N, ZHAO L J. Accurate and ultra-fast estimation of Brillouin frequency shift for distributed fiber sensors [J]. Sensors and Actuators A: Physical, 2020, 303: 111822-1-111822-6.