• Chinese Physics B
  • Vol. 29, Issue 8, (2020)
Chen Wang1,† and Da-Zhi Xu2
Author Affiliations
  • 1Department of Physics, Zhejiang Normal University, Jinhua 32004, China
  • 2School of Physics and Center for Quantum Technology Research, Beijing Institute of Technology, Beijing 100081, China
  • show less
    DOI: 10.1088/1674-1056/ab973b Cite this Article
    Chen Wang, Da-Zhi Xu. A polaron theory of quantum thermal transistor in nonequilibrium three-level systems[J]. Chinese Physics B, 2020, 29(8): Copy Citation Text show less

    Abstract

    We investigate the quantum thermal transistor effect in nonequilibrium three-level systems by applying the polaron-transformed Redfield equation combined with full counting statistics. The steady state heat currents are obtained via this unified approach over a wide region of system–bath coupling, and can be analytically reduced to the Redfield and nonequilibrium noninteracting blip approximation results in the weak and strong coupling limits, respectively. A giant heat amplification phenomenon emerges in the strong system–bath coupling limit, where transitions mediated by the middle thermal bath are found to be crucial to unravel the underlying mechanism. Moreover, the heat amplification is also exhibited with moderate coupling strength, which can be properly explained within the polaron framework.
    H^s=ε0|00|+u=l,rεu|uu|+Δ(|lr|+H.c.),(1)

    View in Article

    V^u=(S^u+H.c.)k(gk,ub^k,u+H.c.),u=l,r,(2)

    View in Article

    V^m=(|ll||rr|)k(gk,mb^k,m+H.c.),(3)

    View in Article

    H^s=ε¯N^+δεσ^z+ηΔσ^x,(4)

    View in Article

    V^m=Δ[cos(2B^)η]σ^x+Δsin(2B^)σ^y,(5a)

    View in Article

    V^u=(eiB^uS^u+eiB^uS^u)k(gk,ub^k,u+gk,ub^k,u)u=l,r,(5b)

    View in Article

    ddtρ^s=i[H^s,ρ^s]+u=l,m,rLu[ρ^s],(6)

    View in Article

    Lm[ρ^s]=α=x,y;ω,ωγα(ω)[P^α(ω)ρ^sP^α(ω)P^α(ω)P^α(ω)ρ^s]+H.c.,(7)

    View in Article

    γx(ω)=η2Δ20dτeiωτ[coshϕm(τ)1],(8a)

    View in Article

    γy(ω)=η2Δ20dτeiωτsinhϕm(τ),(8b)

    View in Article

    ϕm(τ)=4k|gk,mωk|2{cos(ωkτ)[2nm(ωk)+1]isin(ωkτ)}.()

    View in Article

    Lu[ρ^s]=ω,ω[κu,(ω)Q^u(ω)ρ^sQ^u(ω)+κu,+(ω)Q^u(ω)ρ^sQ^u(ω)κu,+(ω)Q^u(ω)Q^u(ω)ρ^sκu,(ω)Q^u(ω)Q^u(ω)ρ^s]+H.c.,(9)

    View in Article

    κu,+(ω)=dω14πΛu(ω1)nu(ω1)Cu(ω1ω),(10a)

    View in Article

    κu,(ω)=dω14πΛu(ω1)[1+nu(ω1)]Cu(ω1+ω).(10b)

    View in Article

    Jl,NIBA=1A[(Gl+Gm+Grωl,+GlGmGr+ωl,)+(Gm+Gr)GlGl+(ωl,+ωl,)],(11)

    View in Article

    Jr,NIBA=1A[(GlGmGr+ωr,+Gl+Gm+Grωr,)+(Gm++Gl)Gr+Gr(ωr,+ωr,)],(12)

    View in Article

    Gm±=dτe±i(εlεr)τη2eϕm(τ)(13a)

    View in Article

    Gu+=14πdω1Λu(ω1)[1+nu(ω1)]×[Cu(Euω1)+H.c.](13b)

    View in Article

    Gu=14πdω1Λu(ω1)nu(ω1)[Cu(ω1+Eu)+H.c.](13c)

    View in Article

    ωu,+=14πGu+dω1ω1Λu(ω1)[1+nu(ω1)]×[Cu(Euω1)+H.c.](14a)

    View in Article

    ωu,=14πGudω1ω1Λu(ω1)nu(ω1)×[Cu(ω1+Eu)+H.c.].(14b)

    View in Article

    Jl=ξ=±(1+ξcosθ)4BEξ(Γ+e+Γe)×{κl,ξa[ΓξeΓξ¯a+(Γ+e+Γe)Γpξ]κl,ξe(Γ+aΓa+Γ+aΓp++ΓaΓp)},(15)

    View in Article

    Jr=ξ=±(1ξcosθ)4BEξ(Γ+e+Γe)×{κr,ξa[ΓξeΓξ¯a+(Γ+e+Γe)Γpξ]κr,ξe(Γ+aΓa+Γ+aΓp++ΓaΓp)},(16)

    View in Article

    Jm=(E+E)Γ+e+ΓeB(Γ+aΓeΓp+ΓaΓ+eΓp),(17)

    View in Article

    βu=|Ju/Jm|,u=l,r.(18)

    View in Article

    Jr,NIBA1AGlGmGr+ωr,+,(19)

    View in Article

    Jm,NIBA(a)=1AGmGlGr+(ωl,ωr,+),(20a)

    View in Article

    Jm,NIBA(b)=1AGmGlGl+(ωl,ωl,+).(20b)

    View in Article

    βrsin2θ16|κl,+eκr,+aκl,+aκr,+eΓa(Γ+a+Γ+e)+Γ+aΓe|,(21)

    View in Article

    κu,+(1)(E±)=κu,+(0)(E±)+dω14πΛu(ω1)nu(ω1)×Re[Cu(1)(ω1E±)],(22a)

    View in Article

    κu,(1)(E±)=κu,(0)(E±)+dω14πΛu(ω1)[1+nu(ω1)]×Re[Cu(1)(ω1+E±)],(22b)

    View in Article

    Jlm=1AGmGl+Gl(ωl,ωl,+),(23)

    View in Article

    Chen Wang, Da-Zhi Xu. A polaron theory of quantum thermal transistor in nonequilibrium three-level systems[J]. Chinese Physics B, 2020, 29(8):
    Download Citation