• Laser & Optoelectronics Progress
  • Vol. 60, Issue 12, 1210017 (2023)
Hongchun Yuan, Lingdong Kong*, Shanshan Zhang, Kai Gao, and Yurui Yang
Author Affiliations
  • School of Information, Shanghai Ocean University, Shanghai 201306, China
  • show less
    DOI: 10.3788/LOP221324 Cite this Article Set citation alerts
    Hongchun Yuan, Lingdong Kong, Shanshan Zhang, Kai Gao, Yurui Yang. Super-Resolution Reconstruction Algorithm of Underwater Image Based on Information Distillation Mechanism[J]. Laser & Optoelectronics Progress, 2023, 60(12): 1210017 Copy Citation Text show less
    References

    [1] Hoegh-Guldberg O, Mumby P J, Hooten A J et al. Coral reefs under rapid climate change and ocean acidification[J]. Science, 318, 1737-1742(2007).

    [2] Bingham B, Foley B, Singh H et al. Robotic tools for deep water archaeology: surveying an ancient shipwreck with an autonomous underwater vehicle[J]. Journal of Field Robotics, 27, 702-717(2010).

    [3] Islam M J, Ho M, Sattar J. Understanding human motion and gestures for underwater human-robot collaboration[J]. Journal of Field Robotics, 36, 851-873(2019).

    [4] Singh A, Singh J. Content adaptive single image interpolation based super resolution of compressed images[J]. International Journal of Electrical and Computer Engineering (IJECE), 10, 3014-3021(2020).

    [5] Ni K S, Nguyen T Q. An adaptable k-nearest neighbors algorithm for MMSE image interpolation[J]. IEEE Transactions on Image Processing, 18, 1976-1987(2009).

    [6] Hwang J W, Lee H S. Adaptive image interpolation based on local gradient features[J]. IEEE Signal Processing Letters, 11, 359-362(2004).

    [7] Keys R. Cubic convolution interpolation for digital image processing[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 29, 1153-1160(1981).

    [8] Hou H, Andrews H. Cubic splines for image interpolation and digital filtering[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 26, 508-517(1978).

    [9] Wei S F, Zhou X Z, Wu W et al. Medical image super-resolution by using multi-dictionary and random forest[J]. Sustainable Cities and Society, 37, 358-370(2018).

    [10] Ma X Y, Zhang J S, Li T et al. Super-resolution geomagnetic reference map reconstruction based on dictionary learning and sparse representation[J]. IEEE Access, 8, 84316-84325(2020).

    [11] Xu Y, Wu Z B, Chanussot J et al. Nonlocal patch tensor sparse representation for hyperspectral image super-resolution[J]. IEEE Transactions on Image Processing, 28, 3034-3047(2019).

    [12] Mishra D, Majhi B, Sa P K et al. Development of robust neighbor embedding based super-resolution scheme[J]. Neurocomputing, 202, 49-66(2016).

    [13] Dong C, Loy C C, He K M et al. Learning a deep convolutional network for image super-resolution[M]. Fleet D, Pajdla T, Schiele B, et al. Computer vision-ECCV 2014. Lecture notes in computer science, 8692, 184-199(2014).

    [14] Dong C, Loy C C, Tang X O. Accelerating the super-resolution convolutional neural network[M]. Leibe B, Matas J, Sebe N, et al. Computer vision-ECCV 2016. Lecture notes in computer science, 9906, 391-407(2016).

    [15] Tang Y Q, Pan H, Zhu Y P et al. A survey of image super-resolution reconstruction[J]. Acta Electronica Sinica, 48, 1407-1420(2020).

    [16] Shi W Z, Caballero J, Huszár F et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C], 1874-1883(2016).

    [17] Kim J, Lee J K, Lee K M. Accurate image super-resolution using very deep convolutional networks[C], 1646-1654(2016).

    [18] Tai Y, Yang J, Liu X M. Image super-resolution via deep recursive residual network[C], 2790-2798(2017).

    [19] Lim B, Son S, Kim H et al. Enhanced deep residual networks for single image super-resolution[C], 1132-1140(2017).

    [20] Zhang Y L, Li K P, Li K et al. Image super-resolution using very deep residual channel attention networks[M]. Ferrari V, Hebert M, Sminchisescu C, et al. Computer vision-ECCV 2018. Lecture notes in computer science, 11211, 294-310(2018).

    [21] Ledig C, Theis L, Huszár F et al. Photo-realistic single image super-resolution using a generative adversarial network[C], 105-114(2017).

    [22] Zhang Y L, Tian Y P, Kong Y et al. Residual dense network for image super-resolution[C], 2472-2481(2018).

    [23] Li J C, Fang F M, Mei K F et al. Multi-scale residual network for image super-resolution[M]. Ferrari V, Hebert M, Sminchisescu C, et al. Computer vision-ECCV 2018. Lecture notes in computer science, 11212, 527-542(2018).

    [24] Kong X T, Zhao H Y, Qiao Y et al. ClassSR: a general framework to accelerate super-resolution networks by data characteristic[C], 12011-12020(2021).

    [25] Song D H, Wang Y H, Chen H T et al. AdderSR: towards energy efficient image super-resolution[C], 15643-15652(2021).

    [26] Hui Z, Gao X B, Yang Y C et al. Lightweight image super-resolution with information multi-distillation network[C], 2024-2032(2019).

    [27] Tai Y, Yang J, Liu X M et al. MemNet: a persistent memory network for image restoration[C], 4549-4557(2017).

    [28] Islam M J, Enan S S, Luo P G et al. Underwater image super-resolution using deep residual multipliers[C], 900-906(2020).

    [29] Horé A, Ziou D. Image quality metrics: PSNR vs. SSIM[C], 2366-2369(2010).

    [30] Wang Z, Bovik A C, Sheikh H R et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 13, 600-612(2004).

    [31] Mao X J, Shen C H, Yang Y B. Image restoration using convolutional auto-encoders with symmetric skip connections[EB/OL]. https://arxiv.org/abs/1606.08921

    [32] Ahn N, Kang B, Sohn K A. Fast, accurate, and lightweight super-resolution with cascading residual network[M]. Ferrari V, Hebert M, Sminchisescu C, et al. Computer vision-ECCV 2018. Lecture notes in computer science, 11214, 256-272(2018).

    Hongchun Yuan, Lingdong Kong, Shanshan Zhang, Kai Gao, Yurui Yang. Super-Resolution Reconstruction Algorithm of Underwater Image Based on Information Distillation Mechanism[J]. Laser & Optoelectronics Progress, 2023, 60(12): 1210017
    Download Citation