• Laser & Optoelectronics Progress
  • Vol. 60, Issue 15, 1517001 (2023)
Chengcheng Huang1, Yonggang Zhang1,*, Lanjü Liang2,**, Haiyun Yao2..., Wenjia Liu1 and Fu Qiu1|Show fewer author(s)
Author Affiliations
  • 1School of Electrical and Information Engineering, Anhui University of Science and Technology, Huainan 232001, Anhui, China
  • 2School of Opto-Electronic Engineering, Zaozhuang University, Zaozhuang 277160, Shandong, China
  • show less
    DOI: 10.3788/LOP221769 Cite this Article Set citation alerts
    Chengcheng Huang, Yonggang Zhang, Lanjü Liang, Haiyun Yao, Wenjia Liu, Fu Qiu. Ultrasensitive Terahertz Biosensor Based on Graphene Regulation Near Its Dirac Point and Electromagnetically Induced Transparency[J]. Laser & Optoelectronics Progress, 2023, 60(15): 1517001 Copy Citation Text show less
    References

    [1] Yao H Y, Yan X, Liang L J et al. Terahertz dynamic multidimensional modulation at Dirac point based on patterned graphene/gallium nitride hybridized with metasurfaces[J]. Acta Physica Sinica, 71, 068101(2022).

    [2] Fang W H, Ma Z T, Lü X Q et al. Flexible terahertz metamaterial biosensor for label-free sensing of serum tumor marker modified on non-metal area[J]. Optics Express, 30, 16630-16643(2022).

    [3] Huang L J, Zhang X, Zhang Z Y. Fingerprint characterization of M-EDTA complexes and iron compounds using terahertz time-domain spectroscopy[J]. Journal of Molecular Structure, 1204, 127515(2020).

    [4] Han X H, Yan S H, Zang Z Y et al. Label-free protein detection using terahertz time-domain spectroscopy[J]. Biomedical Optics Express, 9, 994-1005(2018).

    [5] Ng B H, Wu J F, Hanham S M et al. Spoof plasmon surfaces: a novel platform for THz sensing[J]. Advanced Optical Materials, 1, 543-548(2013).

    [6] Pickwell E, Wallace V P. Biomedical applications of terahertz technology[J]. Journal of Physics D: Applied Physics, 39, R301-R310(2006).

    [7] Lin S J, Xu X L, Hu F R et al. Using antibody modified terahertz metamaterial biosensor to detect concentration of carcinoembryonic antigen[J]. IEEE Journal of Selected Topics in Quantum Electronics, 27, 6900207(2021).

    [8] Wang G Q, Zhu F J, Lang T T et al. All-metal terahertz metamaterial biosensor for protein detection[J]. Nanoscale Research Letters, 16, 109(2021).

    [9] Zhang J, Mu N, Liu L H et al. Highly sensitive detection of malignant glioma cells using metamaterial-inspired THz biosensor based on electromagnetically induced transparency[J]. Biosensors and Bioelectronics, 185, 113241(2021).

    [10] Zhao G Z, Yu B, Zhang C L. Terahertz spectroscopic investigation of four kinds of vitamins[J]. Journal of Applied Physics, 106, 104702(2009).

    [11] Huang C C, Zhang Y G, Liang L J et al. Perovskite-based multi-dimension THz modulation of EIT-like metamaterials[J]. Optik, 262, 169348(2022).

    [12] Lü Y L, Yan F P, Du X M et al. Polarization- and angle-insensitive electromagnetically induced transparency-like metamaterial[J]. Chinese Journal of Lasers, 48, 2314002(2021).

    [13] Lee S H, Choe J H, Kim C et al. Graphene assisted terahertz metamaterials for sensitive bio-sensing[J]. Sensors and Actuators B: Chemical, 310, 127841(2020).

    [14] Lu S H, Zhao J J, Zhou D et al. Enhanced sensitivity of dilute aqueous adrenaline solution with an asymmetric hexagonal ring structure in the terahertz frequencies[J]. Optics Express, 30, 12268-12277(2022).

    [15] Neto A H C, Guinea F, Peres N M R et al. The electronic properties of graphene[J]. Reviews of Modern Physics, 81, 109-162(2009).

    [16] Zhang Y B, Tan Y W, Stormer H L et al. Experimental observation of the quantum Hall effect and Berry’s phase in graphene[J]. Nature, 438, 201-204(2005).

    [17] Ma L M, Xu H, Liu Y H et al. Broadband terahertz absorber based on graphene metamaterial[J]. Acta Optica Sinica, 42, 0923001(2022).

    [18] Yao H Y, Sun Z Q, Yan X et al. Ultrasensitive, light-induced reversible multidimensional biosensing using THz metasurfaces hybridized with patterned graphene and perovskite[J]. Nanophotonics, 11, 1219-1230(2022).

    [19] Huang C C, Zhang Y G, Liang L J et al. Analysis of graphene-based tunable THz four-band absorption sensors[J]. Applied Optics, 61, 2103-2107(2022).

    [20] Yao H Y, Yan X, Yang M S et al. Frequency-dependent ultrasensitive terahertz dynamic modulation at the Dirac point on graphene-based metal and all-dielectric metamaterials[J]. Carbon, 184, 400-408(2021).

    [21] Zhang Y, Shi Y, Liang C H. Broadband tunable graphene-based metamaterial absorber[J]. Optical Materials Express, 6, 3036-3044(2016).

    [22] Wang C S, Jiang X W. Metamaterial perfect absorber with adjustable absorptive efficiency based on graphene[J]. Laser & Optoelectronics Progress, 58, 1516023(2021).

    [23] Chen M M, Xiao Z Y, Lv F et al. Dynamically tunable electromagnetically induced transparency-like effect in terahertz metamaterial based on graphene cross structures[J]. IEEE Journal of Selected Topics in Quantum Electronics, 28, 4700108(2022).

    [24] Liu S S, Li Q, Yang Z Y et al. Nonlinear modulation of electromagnetically induced transparency based on graphene-metal hybrid metamaterial structure[J]. Chinese Journal of Lasers, 48, 1918006(2021).

    [25] Xu W D, Huang Y X, Zhou R Y et al. Metamaterial-free flexible graphene-enabled terahertz sensors for pesticide detection at bio-interface[J]. ACS Applied Materials & Interfaces, 12, 44281-44287(2020).

    [26] Cui Z J, Wang Y, Shi Y Q et al. Significant sensing performance of an all-silicon terahertz metasurface chip for Bacillus thuringiensis Cry1Ac protein[J]. Photonics Research, 10, 740-746(2022).

    Chengcheng Huang, Yonggang Zhang, Lanjü Liang, Haiyun Yao, Wenjia Liu, Fu Qiu. Ultrasensitive Terahertz Biosensor Based on Graphene Regulation Near Its Dirac Point and Electromagnetically Induced Transparency[J]. Laser & Optoelectronics Progress, 2023, 60(15): 1517001
    Download Citation