• Laser & Optoelectronics Progress
  • Vol. 56, Issue 9, 090601 (2019)
Shiwu Xu1,2, Yi Wu1,*, and Guodong Su3
Author Affiliations
  • 1 Fujian Provincial Key Laboratory of Photonics Technology, Key Laboratory of Opto-Electronic Science and Technology for Medicine of the Ministry of Education, Fujian Normal University, Fuzhou, Fujian 350007, China
  • 2 Concord University College, Fujian Normal University, Fuzhou, Fujian 350117, China
  • 3 Department of Information Engineering and Computer Science, Feng Chia University, Taichung, Taiwan 40724, China
  • show less
    DOI: 10.3788/LOP56.090601 Cite this Article Set citation alerts
    Shiwu Xu, Yi Wu, Guodong Su. Fingerprint Matching and Localization Algorithm Based on Orthogonal Frequency Division Multiplexing Modulation for Visible Light Communication[J]. Laser & Optoelectronics Progress, 2019, 56(9): 090601 Copy Citation Text show less
    References

    [1] Sun X S, Hu S H, Su L et al. Participatory sensing meets opportunistic sharing: automatic phone-to-phone communication in vehicles[J]. IEEE Transactions on Mobile Computing, 15, 2550-2563(2016). http://ieeexplore.ieee.org/document/7337442/

    [2] Hassan N U, Naeem A, Pasha M A et al. Indoor positioning using visible LED lights[J]. ACM Computing Surveys, 48, 20(2015). http://dl.acm.org/citation.cfm?id=2835376

    [3] Wu C S, Yang Z, Zhou Z M et al. Mitigating large errors in WiFi-based indoor localization for smartphones[J]. IEEE Transactions on Vehicular Technology, 66, 6246-6257(2017). http://ieeexplore.ieee.org/document/7748574/

    [4] Xie B, Chen K Y, Tan G. et al. LIPS: a light intensity: based positioning system for indoor environments[J]. ACM Transactions on Sensor Networks, 12, 28(2016). http://dl.acm.org/citation.cfm?id=2953880

    [5] Armstrong J, Sekercioglu Y, Neild A. Visible light positioning: a roadmap for international standardization[J]. IEEE Communications Magazine, 51, 68-73(2013). http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=6685759

    [6] Do T H, Yoo M. TDOA-based indoor positioning using visible light[J]. Photonic Network Communications, 27, 80-88(2014). http://dl.acm.org/citation.cfm?id=2597518

    [7] Luo J H, Fan L Y, Li H S. Indoor positioning systems based on visible light communication: state of the art[J]. IEEE Communications Surveys & Tutorials, 19, 2871-2893(2017). http://ieeexplore.ieee.org/document/8015106

    [8] Jung S Y, Hann S, Park C S. TDOA-based optical wireless indoor localization using LED ceiling lamps[J]. IEEE Transactions on Consumer Electronics, 57, 1592-1597(2011). http://ieeexplore.ieee.org/document/6131130/

    [9] Vongkulbhisal J, Chantaramolee B, Zhao Y et al. A fingerprinting-based indoor localization system using intensity modulation of light emitting diodes[J]. Microwave and Optical Technology Letters, 54, 1218-1227(2012). http://onlinelibrary.wiley.com/doi/10.1002/mop.26763/full

    [10] Zhou Z, Kavehrad M, Deng P. Indoor positioning algorithm using light-emitting diode visible light communications[J]. Optical Engineering, 51, 085009(2012). http://spie.org/x648.html?product_id=1000966

    [11] Shen R, Zhang J, Wang D. Indoor location method and the Cramer-Rao Bound estimation based on visible light communications[J]. Laser & Optoelectronics Progress, 51, 090604(2014).

    [12] Guan W P, Wu Y X, Wen S S et al. Indoor positioning technology of visible light communication based on CDMA modulation[J]. Acta Optica Sinica, 36, 1106006(2016).

    [13] Gu W J, Aminikashani M, Deng P et al. Impact of multipath reflections on the performance of indoor visible light positioning systems[J]. Journal of Lightwave Technology, 34, 2578-2587(2016). http://ieeexplore.ieee.org/document/7431937/

    [14] Xu W, Wang J, Shen H. et al. Indoor positioning for multiphotodiode device using visible-light communications[J]. IEEE Photonics Journal, 8, 7900511(2016). http://ieeexplore.ieee.org/document/7368080

    [15] Ye Z W, Ye H Y, Nie X Y et al. High-accuracy visible light positioning method based on received signal strength indicator[J]. Chinese Journal of Lasers, 45, 0306002(2018).

    [16] Gligoric K, Ajmani M, Vukobratovic D et al. Visible light communications-based indoor positioning via compressed sensing[J]. IEEE Communications Letters, 22, 1410-1413(2018). http://ieeexplore.ieee.org/document/8355476/

    [17] Pathak P H, Feng X T, Hu P F et al. Visible light communication, networking, and sensing: a survey, potential and challenges[J]. IEEE Communications Surveys & Tutorials, 17, 2047-2077(2015). http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=7239528

    [18] Wang Q, Wang Z C, Dai L L. Asymmetrical hybrid optical OFDM for visible light communications with dimming control[J]. IEEE Photonics Technology Letters, 27, 974-977(2015). http://ieeexplore.ieee.org/document/7046383/

    [19] Chen C, Videv S, Tsonev D et al. Fractional frequency reuse in DCO-OFDM-based optical attocell networks[J]. Journal of Lightwave Technology, 33, 3986-4000(2015). http://ieeexplore.ieee.org/document/7163284/

    [20] Mossaad M S A, Hranilovic S, Lampe L. Visiblelight communications using OFDM and multiple LEDs[J]. IEEE Transactions on Communications, 63, 4304-4313(2015). http://ieeexplore.ieee.org/document/7208804/

    [21] Jia K J, Jin B, Hao L et al. Performance analysis of DCO-OFDM and ACO-OFDM systems in indoor visible light communications[J]. Chinese Journal of Lasers, 44, 0806003(2017).

    [22] Grubor J, Randel S, Langer K D et al. Broadband information broadcasting using LED-based interior lighting[J]. Journal of Lightwave Technology, 26, 3883-3892(2008). http://ieeexplore.ieee.org/document/4758667

    Shiwu Xu, Yi Wu, Guodong Su. Fingerprint Matching and Localization Algorithm Based on Orthogonal Frequency Division Multiplexing Modulation for Visible Light Communication[J]. Laser & Optoelectronics Progress, 2019, 56(9): 090601
    Download Citation