[1] Zhang X, Yin K, Zhang J H et al. High bandwidth 25 GHz dual optical frequency comb source[J]. Chinese Journal of Lasers, 48, 1116002(2021).
[2] Schiller S. Spectrometry with frequency combs[J]. Optics Letters, 27, 766-768(2002).
[3] Coddington I, Swann W C, Newbury N R. Coherent multiheterodyne spectroscopy using stabilized optical frequency combs[J]. Physical Review Letters, 100, 013902(2008).
[4] Thorpe M J, Ye J. Cavity-enhanced direct frequency comb spectroscopy[J]. Applied Physics B, 91, 397-414(2008).
[5] Han B, Ge J M, Ren X Y et al. Research on surface shape measurement technology of terahertz devices based on optical frequency comb[J]. Chinese Journal of Lasers, 49, 1704001(2022).
[6] Coddington I, Swann W C, Nenadovic L et al. Rapid and precise absolute distance measurements at long range[J]. Nature Photonics, 3, 351-356(2009).
[7] Lee J, Han S, Lee K et al. Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength[J]. Measurement Science and Technology, 24, 045201(2013).
[8] Li C H, Benedick A J, Fendel P et al. A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1[J]. Nature, 452, 610-612(2008).
[9] Steinmetz T, Wilken T, Araujo-Hauck C et al. Laser frequency combs for astronomical observations[J]. Science, 321, 1335-1337(2008).
[10] Savchenkov A A, Matsko A B, Ilchenko V S et al. Tunable optical frequency comb with a crystalline whispering gallery mode resonator[J]. Physical Review Letters, 101, 093902(2008).
[11] Liang W, Savchenkov A A, Matsko A B et al. Generation of near-infrared frequency combs from a MgF2 whispering gallery mode resonator[J]. Optics Letters, 36, 2290-2292(2011).
[12] Okawachi Y, Saha K, Levy J S et al. Octave-spanning frequency comb generation in a silicon nitride chip[J]. Optics Letters, 36, 3398-3400(2011).
[13] Johnson A R, Okawachi Y, Lamont M R E et al. Microresonator-based comb generation without an external laser source[J]. Optics Express, 22, 1394-1401(2014).
[14] Jung H, Xiong C, Fong K Y et al. Optical frequency comb generation from aluminum nitride microring resonator[J]. Optics Letters, 38, 2810-2813(2013).
[15] Jung H, Fong K Y, Xiong C et al. Electrical tuning and switching of an optical frequency comb generated in aluminum nitride microring resonators[J]. Optics Letters, 39, 84-87(2014).
[16] Zhang X L, Zhao Y J. Research progress of microresonator-based optical frequency combs[J]. Acta Optica Sinica, 41, 0823014(2021).
[17] Cocorullo G, Rendina I. Thermo-optical modulation at 1.5 μm in silicon etalon[J]. Electronics Letters, 28, 83-85(1992).
[18] Carmon T, Yang L, Vahala K J. Dynamical thermal behavior and thermal self-stability of microcavities[J]. Optics Express, 12, 4742-4750(2004).
[19] Wang J, Zhu B W, Hao Z Z et al. Thermo-optic effects in on-chip lithium niobate microdisk resonators[J]. Optics Express, 24, 21869-21879(2016).
[20] He M F, Chen K X, Hu Z F. Kerr optical frequency comb based on micro-ring resonator with thermal effect[J]. Laser & Optoelectronics Progress, 55, 091901(2018).
[21] Lee H, Chen T, Li J et al. Chemically etched ultra-high-Q resonators[C], CF2I.1(2013).
[22] Chembo Y K, Yu N. Modal expansion approach to optical-frequency-comb generation with monolithic whispering-gallery-mode resonators[J]. Physical Review A, 82, 033801(2010).
[23] Coen S, Randle H G, Sylvestre T et al. Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato-Lefever model[J]. Optics Letters, 38, 37-39(2013).
[24] Del'Haye P, Herr T, Gavartin E et al. Octave spanning tunable frequency comb from a microresonator[J]. Physical Review Letters, 107, 063901(2011).
[25] Choi H S, Armani A M. Thermal nonlinear effects in hybrid optical microresonators[J]. Applied Physics Letters, 97, 223306(2010).