• Laser & Optoelectronics Progress
  • Vol. 61, Issue 9, 0900005 (2024)
Haibo Liu, Yuan Hu*, Yuzhe Li, and Jinhui Zhao
Author Affiliations
  • School of Opto-Electronic Engineering, Changchun University of Science and Technology, Changchun 130022, Jilin, China
  • show less
    DOI: 10.3788/LOP231170 Cite this Article Set citation alerts
    Haibo Liu, Yuan Hu, Yuzhe Li, Jinhui Zhao. Review of Current Status and Development of Liquid Lens[J]. Laser & Optoelectronics Progress, 2024, 61(9): 0900005 Copy Citation Text show less
    References

    [1] Sato S. Liquid-crystal lens-cells with variable focal length[J]. Japanese Journal of Applied Physics, 18, 1679-1684(1979).

    [2] Nose T, Masuda S, Sato S. Optical properties of a hybrid-aligned liquid crystal microlens[J]. Molecular Crystals and Liquid Crystals, 199, 27-35(1991).

    [3] Wang B, Ye M, Sato S. Liquid crystal lens with stacked structure of liquid-crystal layers[J]. Optics Communications, 250, 266-273(2005).

    [4] Wang B, Ye M, Sato S. Liquid crystal lens with focal length variable from negative to positive values[J]. IEEE Photonics Technology Letters, 18, 79-81(2006).

    [5] Ren H W, Lin Y H, Fan Y H et al. Polarization-independent phase modulation using a polymer-dispersed liquid crystal[J]. Applied Physics Letters, 86, 141110(2005).

    [6] Kawamura M, Ito Y. Liquid crystal lens with double circularly hole-patterned electrodes[J]. Molecular Crystals and Liquid Crystals, 542, 176/[698]-181/[703](2011).

    [7] Algorri J F, Morawiak P, Bennis N et al. Positive-negative tunable liquid crystal lenses based on a microstructured transmission line[J]. Scientific Reports, 10, 10153(2020).

    [8] Kao Y Y, Chao P C P, Hsueh C W. A new low-voltage-driven GRIN liquid crystal lens with multiple ring electrodes in unequal widths[J]. Optics Express, 18, 18506-18518(2010).

    [9] Li G Q, Mathine D L, Valley P et al. Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications[J]. Proceedings of the National Academy of Sciences of the United States of America, 103, 6100-6104(2006).

    [10] Naumov A F, Loktev M Y, Guralnik I R et al. Liquid-crystal adaptive lenses with modal control[J]. Optics Letters, 23, 992-994(1998).

    [11] Galstian T, Asatryan K, Presniakov V et al. High optical quality electrically variable liquid crystal lens using an additional floating electrode[J]. Optics Letters, 41, 3265-3268(2016).

    [12] Gong W X, Yu T, Wang W Z et al. Simulation of modal control liquid crystal lens with step sheet resistance distribution[J]. Chinese Journal of Liquid Crystals and Displays, 35, 908-913(2020).

    [13] Pusenkova A, Galstian T. Electrically tunable liquid crystal lens in extreme temperature conditions[J]. Molecular Crystals and Liquid Crystals, 703, 39-51(2020).

    [14] Shimizu Y, Koyama D, Fukui M et al. Ultrasound liquid crystal lens[J]. Applied Physics Letters, 112, 161104(2018).

    [15] Berge B, Peseux J. Variable focal lens controlled by an external voltage: an application of electrowetting[J]. The European Physical Journal E, 3, 159-163(2000).

    [16] Krupenkin T, Yang S, Mach P. Tunable liquid microlens[J]. Applied Physics Letters, 82, 316-318(2003).

    [17] Kuiper S, Hendriks B H W. Variable-focus liquid lens for miniature cameras[J]. Applied Physics Letters, 85, 1128-1130(2004).

    [18] Kang M, Yue R F, Wu J G et al. Conical tube employed variable-focus liquid lens based on EWOD[J]. Chinese Journal of Sensors and Actuators, 19, 1768-1770, 1774(2006).

    [19] Smith N R, Hou L L, Zhang J L et al. Fabrication and demonstration of electrowetting liquid lens arrays[J]. Journal of Display Technology, 5, 411-413(2009).

    [20] Lee J K, Park K W, Kim H R et al. Durability enhancement of a microelectromechanical system-based liquid droplet lens[J]. Japanese Journal of Applied Physics, 49, 06GN11(2010).

    [21] Krogmann F, Monch W, Zappe H. Electrowetting for tunable microoptics[J]. Journal of Microelectromechanical Systems, 17, 1501-1512(2008).

    [22] Lee J K, Choi J C, Jang W I et al. Electrowetting lens employing hemispherical cavity formed by hydrofluoric acid, nitric acid, and acetic acid etching of silicon[J]. Japanese Journal of Applied Physics, 51, 06FL05(2012).

    [23] Li L, Liu C, Ren H W et al. Annular folded electrowetting liquid lens[J]. Optics Letters, 40, 1968-1971(2015).

    [24] Li L, Liu C, Ren H W et al. Optical switchable electrowetting lens[J]. IEEE Photonics Technology Letters, 28, 1505-1508(2016).

    [25] Kopp D, Brender T, Zappe H. All-liquid dual-lens optofluidic zoom system[J]. Applied Optics, 56, 3758-3763(2017).

    [26] Zhao P P, Li Y, Zappe H. Accelerated electrowetting-based tunable fluidic lenses[J]. Optics Express, 29, 15733-15746(2021).

    [27] Liu C, Wang D, Wang Q H et al. Multifunctional optofluidic lens with beam steering[J]. Optics Express, 28, 7734-7745(2020).

    [28] Song X M, Zhang H X, Li D Y et al. Electrowetting lens with large aperture and focal length tunability[J]. Scientific Reports, 10, 16318(2020).

    [29] Xu J B, Zhao Y R, Liu C et al. Triple-layer spherical electrowetting liquid lens with large-aperture and high zoom ratio[J]. Optics and Lasers in Engineering, 160, 107311(2023).

    [30] Xu J B, Zhao Y R, Liu C et al. Non-aqueous organic solution based on a large-aperture spherical electrowetting liquid lens with a wide tunable focal length range[J]. Journal of Materials Chemistry C, 10, 6778-6793(2022).

    [31] Knollman G C, Bellin J L S, Weaver J L. Variable-focus liquid-filled hydroacoustic lens[J]. The Journal of the Acoustical Society of America, 49, 253-261(1971).

    [32] Ren H W, Wu S T. Variable-focus liquid lens by changing aperture[J]. Applied Physics Letters, 86, 211107(2005).

    [33] Yu H B, Zhou G Y, Leung H M et al. Tunable liquid-filled lens integrated with aspherical surface for spherical aberration compensation[J]. Optics Express, 18, 9945-9954(2010).

    [34] Jia W L, Xiang D, Li S J. A liquid progressive multifocal lens adjusted by the deformation of a non-uniform elastic membrane due to the variation of liquid pressure[J]. Journal of the European Optical Society-Rapid Publications, 14, 17(2018).

    [35] Jia W L, Li S J. Liquid progressive multifocal lenses based on asymmetrical freeform surface structure using non-uniform thickness membranes[J]. Optical and Quantum Electronics, 52, 1-14(2020).

    [36] Yu H B, Zhou G Y, Chau F S et al. Tunable electromagnetically actuated liquid-filled lens[J]. Sensors and Actuators A: Physical, 167, 602-607(2011).

    [37] Yu H B, Guo B, Tsu-Hui A L et al. Characterization of the dynamic mechanical stability of liquid-filled lenses[J]. Optics Express, 20, 23720-23727(2012).

    [38] Li H T, Chen Y J, Wang Y et al. Compact electromagnetically driven liquid-filled lens with bidirectional wide range focus tuning capability[J]. Sensors and Actuators A: Physical, 349, 113950(2023).

    [39] Schneider F, Eberhard D, Strohmeier D et al. Adaptive fluidic PDMS-lens with integrated piezoelectric actuator[C], 120-123(2008).

    [40] Nicolas S, Allain M, Bridoux C et al. Fabrication and characterization of a new varifocal liquid lens with embedded PZT actuators for high optical performances[C], 65-68(2015).

    [41] Wang L H, Ishikawa M. Dynamic response of elastomer-based liquid-filled variable focus lens[J]. Sensors, 19, 4624(2019).

    [42] Carpi F, Frediani G, Turco S et al. Bioinspired tunable lens with muscle-like electroactive elastomers[J]. Advanced Functional Materials, 21, 4152-4158(2011).

    [43] Li J R, Wang Y, Liu L W et al. A biomimetic soft lens controlled by electrooculographic signal[J]. Advanced Functional Materials, 29, 1903762(2019).

    [44] Shi H Q, Wang H M. Theoretical nonlinear analysis of a biomimetic tunable lens driven by dielectric elastomer[J]. Chinese Journal of Theoretical and Applied Mechanics, 52, 1719-1729(2020).

    [45] Cheng Y, Cao J, Wang Y B et al. Design and analysis of liquid lens driven by dielectric elastomer[J]. Acta Optica Sinica, 41, 0522004(2021).

    [46] Choi S T, Lee J Y, Kwon J O et al. Liquid-filled varifocal lens on a chip[J]. Proceedings of SPIE, 7208, 72080P(2009).

    [47] Pouydebasque A, Bolis S, Jacquet F et al. Thin varifocal liquid lenses actuated below 10 V for mobile phone cameras[J]. Proceedings of SPIE, 8252, 82520P(2012).

    [48] Jen T H, Chang Y C, Ting C H et al. Locally controllable liquid crystal lens array for partially switchable 2D/3D display[J]. Journal of Display Technology, 11, 839-844(2015).

    [49] Galstian T, Sova O, Asatryan K et al. Optical camera with liquid crystal autofocus lens[J]. Optics Express, 25, 29945-29964(2017).

    [50] Xing Z B, Fan W, Huang D J et al. High laser damage threshold reflective optically addressed liquid crystal light valve based on gallium nitride conductive electrodes[J]. High Power Laser Science and Engineering, 10, e35(2022).

    [51] Chen H S, Wang Y J, Chen P J et al. Electrically adjustable location of a projected image in augmented reality via a liquid-crystal lens[J]. Optics Express, 23, 28154-28162(2015).

    [52] Xu R Q, Li L, Kong M M et al. Measurement and analysis of transient process of electrowetting liquid lens[J]. Acta Optica Sinica, 43, 1023001(2023).

    [53] Li Y, Wang G M, Wang Y et al. Calibration method of liquid lens focusing system for machine vision measurement[J]. Infrared and Laser Engineering, 51, 20210472(2022).

    [54] Kuang F L, Yuan R Y, Wang Q H et al. Large zooming range adaptive microscope employing tunable objective and eyepiece[J]. Scientific Reports, 10, 14644(2020).

    [55] Li L, Xiao L, Wang J H et al. Movable electrowetting optofluidic lens for optical axial scanning in microscopy[J]. Opto-Electronic Advances, 2, 180025(2019).

    [56] Kong M M, Pan S C, Yuan D et al. Design and analysis of aspheric liquid lens with square cavity structure[J]. Laser & Optoelectronics Progress, 60, 1922002(2023).

    [57] Shahini A, Zeng P, Zhao Y et al. Individually tunable liquid lens arrays using transparent graphene for compound eye applications[C], 597-600(2016).

    [58] Shahini A, Jin H, Zhou Z X et al. Toward individually tunable compound eyes with transparent graphene electrode[J]. Bioinspiration & Biomimetics, 12, 046002(2017).

    [59] Zhao R, Peng C, Zhang K et al. Design and simulation of bionic compound eye with electrowetting liquid lens[J]. Opto-Electronic Engineering, 48, 0200120(2021).

    [60] Cheng Y, Cao J E, Meng L T et al. Reducing defocus aberration of a compound and human hybrid eye using liquid lens[J]. Applied Optics, 57, 1679-1688(2018).

    [61] Zheng Y, Wang D, Jiang Z et al. Continuous zoom compound eye imaging system based on liquid lenses[J]. Optics Express, 29, 37565-37579(2021).