• Laser & Optoelectronics Progress
  • Vol. 60, Issue 10, 1010024 (2023)
Yao Chen, Wenjun Yu*, and Yongbin Gao
Author Affiliations
  • School of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
  • show less
    DOI: 10.3788/LOP220851 Cite this Article Set citation alerts
    Yao Chen, Wenjun Yu, Yongbin Gao. X-Ray Spine Corner Localization using an Embedded Attention Mechanism-Based Model[J]. Laser & Optoelectronics Progress, 2023, 60(10): 1010024 Copy Citation Text show less
    References

    [1] Carr A J. Adolescent idiopathic scoliosis in identical twins[J]. The Journal of Bone and Joint Surgery. British Volume, 72, 1077(1990).

    [2] Vrtovec T, Pernuš F, Likar B. A review of methods for quantitative evaluation of spinal curvature[J]. European Spine Journal, 18, 593-607(2009).

    [3] Wills B P D, Auerbach J D, Zhu X W et al. Comparison of Cobb angle measurement of scoliosis radiographs with preselected end vertebrae: traditional versus digital acquisition[J]. Spine, 32, 98-105(2007).

    [4] Zhen X T, Wang Z J, Islam A et al. Multi-scale deep networks and regression forests for direct bi-ventricular volume estimation[J]. Medical Image Analysis, 30, 120-129(2016).

    [5] Zhang K, Zhang L. Multi-scale detection for X-ray prohibited items in complex background[J]. Laser & Optoelectronics Progress, 58, 2210002(2021).

    [6] Guo S X, Zhang L. Yolo-C: one-stage network for prohibited items detection within X-ray images[J]. Laser & Optoelectronics Progress, 58, 0810003(2021).

    [7] Guo R H, Zhang L, Yang Y et al. X-ray image controlled knife detection and recognition based on improved SSD[J]. Laser & Optoelectronics Progress, 58, 0404001(2021).

    [8] Hu J P, Song F F, Luo C L et al. Non-metric distortion correction method based on adaptive corner detection[J]. Laser & Optoelectronics Progress, 58, 1210012(2021).

    [9] Zhao H, Zhang J X, Zhang Z G. PCNN medical image fusion based on NSCT and DWT[J]. Laser & Optoelectronics Progress, 58, 2017002(2021).

    [10] Cao B, Yang F, Ma J G. Application of deep learning methods in diagnosis of lung nodules[J]. Laser & Optoelectronics Progress, 58, 1600005(2021).

    [11] Chen H, Shen C Y, Qin J et al. Automatic localization and identification of vertebrae in spine CT via a joint learning model with deep neural networks[M]. Navab N, Hornegger J, Wells W M, et al. Medical image computing and computer-assisted intervention-MICCAI 2015. Lecture notes in computer science, 9343, 515-522(2015).

    [12] Yang D, Xiong T, Xu D G et al. Automatic vertebra labeling in large-scale 3D CT using deep image-to-image network with message passing and sparsity regularization[M]. Niethammer M, Styner M, Aylward S, et al. Information processing in medical imaging. Lecture notes in computer science, 10265, 633-644(2017).

    [13] Liao H F, Mesfin A, Luo J B. Joint vertebrae identification and localization in spinal CT images by combining short- and long-range contextual information[J]. IEEE Transactions on Medical Imaging, 37, 1266-1275(2018).

    [14] Wu H B, Bailey C, Rasoulinejad P et al. Automatic landmark estimation for adolescent idiopathic scoliosis assessment using BoostNet[M]. Descoteaux M, Maier-Hein L, Franz A, et al. Medical image computing and computer assisted intervention-MICCAI 2017. Lecture notes in computer science, 10433, 127-135(2017).

    [15] Yi J R, Wu P X, Huang Q Y et al. Vertebra-focused landmark detection for scoliosis assessment[C], 736-740(2020).

    [16] Misra D, Nalamada T, Arasanipalai A U et al. Rotate to attend: convolutional triplet attention module[C], 3138-3147(2021).

    [17] Law H, Deng J. CornerNet: detecting objects as paired keypoints[J]. International Journal of Computer Vision, 128, 642-656(2020).

    [18] Lin Y, Zhou H Y, Ma K et al. Seg4Reg networks for automated spinal curvature estimation[M]. Cai Y L, Wang L S, Audette M, et al. Computational methods and clinical applications for spine imaging. Lecture notes in computer science, 11963, 69-74(2020).

    [19] Wang L S, Xu Q H, Leung S et al. Accurate automated Cobb angles estimation using multi-view extrapolation net[J]. Medical Image Analysis, 58, 101542(2019).

    [20] Khanal B, Dahal L, Adhikari P et al. Automatic Cobb angle detection using vertebra detector and vertebra corners regression[M]. Cai Y L, Wang L S, Audette M, et al. Computational methods and clinical applications for spine imaging. Lecture notes in computer science, 11963, 81-87(2020).

    [21] Horng M H, Kuok C P, Fu M J et al. Cobb angle measurement of spine from X-ray images using convolutional neural network[J]. Computational and Mathematical Methods in Medicine, 2019, 6357171(2019).

    [22] Wang S X, Huang S H, Wang L S. Spinal curve guide network (SCG-net) for accurate automated spinal curvature estimation[M]. Cai Y L, Wang L S, Audette M, et al. Computational methods and clinical applications for spine imaging. Lecture notes in computer science, 11963, 107-112(2020).

    [23] Chen K L, Peng C, Li Y et al. Accurate automated keypoint detections for spinal curvature estimation[M]. Cai Y L, Wang L S, Audette M, et al. Computational methods and clinical applications for spine imaging. Lecture notes in computer science, 11963, 63-68(2020).

    Yao Chen, Wenjun Yu, Yongbin Gao. X-Ray Spine Corner Localization using an Embedded Attention Mechanism-Based Model[J]. Laser & Optoelectronics Progress, 2023, 60(10): 1010024
    Download Citation