[1] Ludlow A D, Boyd M M, Ye J et al. Optical atomic clocks[J]. Reviews of Modern Physics, 87, 637-701(2015).
[2] Lu X T, Chang H. Progress of optical lattice atomic clocks[J]. Acta Optica Sinica, 42, 0327004(2022).
[3] Tino G M. Testing gravity with cold atom interferometry: results and prospects[J]. Quantum Science and Technology, 6, 024014(2021).
[4] Savoie D, Altorio M, Fang B et al. Interleaved atom interferometry for high-sensitivity inertial measurements[J]. Science Advances, 4, eaau7948(2018).
[5] Budker D, Romalis M. Optical magnetometry[J]. Nature Physics, 3, 227-234(2007).
[6] Bothwell T, Kennedy C J, Aeppli A et al. Resolving the gravitational redshift across a millimetre-scale atomic sample[J]. Nature, 602, 420-424(2022).
[7] Kasevich M A, Chu S. Atomic interferometry using stimulated Raman transitions[J]. Physical Review Letters, 67, 181-184(1991).
[8] Wasilewski W, Jensen K, Krauter H et al. Quantum noise limited and entanglement-assisted magnetometry[J]. Physical Review Letters, 104, 133601(2010).
[9] Rosi G, Sorrentino F, Cacciapuoti L et al. Precision measurement of the Newtonian gravitational constant using cold atoms[J]. Nature, 510, 518-521(2014).
[10] Parker R H, Yu C H, Zhong W C et al. Measurement of the fine-structure constant as a test of the Standard Model[J]. Science, 360, 191-195(2018).
[11] Rosi G, D’Amico G, Cacciapuoti L et al. Quantum test of the equivalence principle for atoms in coherent superposition of internal energy states[J]. Nature Communications, 8, 1-6(2017).
[12] Yu N, Tinto M. Gravitational wave detection with single-laser atom interferometers[J]. General Relativity and Gravitation, 43, 1943-1952(2011).
[13] Graham P W, Hogan J M, Kasevich M A et al. New method for gravitational wave detection with atomic sensors[J]. Physical Review Letters, 110, 171102(2013).
[14] Chaibi W, Geiger R, Canuel B et al. Low frequency gravitational wave detection with ground-based atom interferometer arrays[J]. Physical Review D, 93, 021101(2016).
[15] Arvanitaki A, Graham P W, Hogan J M et al. Search for light scalar dark matter with atomic gravitational wave detectors[J]. Physical Review D, 97, 075020(2018).
[16] Safronova M, Budker D, DeMille D et al. Search for new physics with atoms and molecules[J]. Reviews of Modern Physics, 90, 025008(2018).
[17] Stray B, Lamb A, Kaushik A et al. Quantum sensing for gravity cartography[J]. Nature, 602, 590-594(2022).
[18] Wineland D J, Bollinger J J, Itano W M et al. Spin squeezing and reduced quantum noise in spectroscopy[J]. Physical Review A, 46, R6797-R6800(1992).
[19] Kitagawa M, Ueda M. Squeezed spin states[J]. Physical Review A, 47, 5138-5143(1993).
[20] Qin Z Z, Wang M H, Ma R et al. Progress of the squeezed states of light and their application[J]. Laser & Optoelectronics Progress, 59, 1100001(2022).
[21] Liu Y Z, Zuo X J, Yan Z H et al. Analysis of quantum interferometer based on optical parametric amplifier[J]. Acta Optica Sinica, 42, 0327013(2022).
[22] Aasi J, Abadie J, Abbott B P et al. Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light[J]. Nature Photonics, 7, 613-619(2013).
[23] Bohnet J G, Sawyer B C, Britton J W et al. Quantum spin dynamics and entanglement generation with hundreds of trapped ions[J]. Science, 352, 1297-1301(2016).
[24] Nichol B C, Srinivas R, Nadlinger D P et al. An elementary quantum network of entangled optical atomic clocks[J]. Nature, 609, 689-694(2022).
[25] Anders F, Idel A, Feldmann P et al. Momentum entanglement for atom interferometry[J]. Physical Review Letters, 127, 140402(2021).
[26] Pezzè L, Smerzi A, Oberthaler M K et al. Quantum metrology with nonclassical states of atomic ensembles[J]. Reviews of Modern Physics, 90, 035005(2018).
[27] Gross C. Spin squeezing, entanglement and quantum metrology with Bose-Einstein condensates[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 45, 103001(2012).
[28] Ma J, Wang X G, Sun C P et al. Quantum spin squeezing[J]. Physics Reports, 509, 89-165(2011).
[29] Pedrozo-Peñafiel E, Colombo S, Shu C et al. Entanglement on an optical atomic-clock transition[J]. Nature, 588, 414-418(2020).
[30] Greve G P, Luo C, Wu B et al. Entanglement-enhanced matter-wave interferometry in a high-finesse cavity[J]. Nature, 610, 472-477(2022).
[32] Bao H, Duan J L, Jin S C et al. Spin squeezing of 1011 atoms by prediction and retrodiction measurements[J]. Nature, 581, 159-163(2020).
[33] Jin S C, Bao H, Duan J L et al. Adiabaticity in state preparation for spin squeezing of large atom ensembles[J]. Photonics Research, 9, 2296-2302(2021).
[34] Huang L G, Chen F, Li X W et al. Dynamic synthesis of Heisenberg-limited spin squeezing[J]. Npj Quantum Information, 7, 1-7(2021).
[35] Zhang Y C, Zhou X F, Zhou X X et al. Cavity-assisted single-mode and two-mode spin-squeezed states via phase-locked atom-photon coupling[J]. Physical Review Letters, 118, 083604(2017).
[36] Ma X X, Zhang X, Huang K K et al. Low noise measurement method based on differential optical interferometer for cold atom experiments[J]. Optics Express, 28, 175-183(2020).
[37] Jiao G F, Zhang K Y, Chen L Q et al. Quantum non-demolition measurement based on an SU(1, 1)-SU(2)-concatenated atom-light hybrid interferometer[J]. Photonics Research, 10, 475-482(2022).
[38] Bai S Y, An J H. Generating stable spin squeezing by squeezed-reservoir engineering[J]. Physical Review Letters, 127, 083602(2021).
[39] Dicke R H. Coherence in spontaneous radiation processes[J]. Physical Review, 93, 99(1954).
[40] Mandel L, Wolf E[M]. Optical coherence and quantum optics(1995).
[41] Wineland D J, Bollinger J J, Itano W M et al. Squeezed atomic states and projection noise in spectroscopy[J]. Physical Review A, 50, 67(1994).
[42] Chen Z L. Breaking quantum limits with collective cavity-QED: generation of spin squeezed states via quantum non-demolition measurements[D](2013).
[43] Ren Z H, Li W D, Smerzi A et al. Metrological detection of multipartite entanglement from young diagrams[J]. Physical Review Letters, 126, 080502(2021).
[44] Leibfried D, Barrett M D, Schaetz T et al. Toward Heisenberg-limited spectroscopy with multiparticle entangled states[J]. Science, 304, 1476-1478(2004).
[45] Zhang Z, Duan L M. Quantum metrology with Dicke squeezed states[J]. New Journal of Physics, 16, 103037(2014).
[46] Leroux I D. Squeezing collective atomic spins with an optical resonator[D](2011).
[48] Appel J, Windpassinger P J, Oblak D et al. Mesoscopic atomic entanglement for precision measurements beyond the standard quantum limit[J]. Proceedings of the National Academy of Sciences of the United States of America, 106, 10960-10965(2009).
[49] Louchet-Chauvet A, Appel J, Renema J J et al. Entanglement-assisted atomic clock beyond the projection noise limit[J]. New Journal of Physics, 12, 065032(2010).
[50] Vasilakis G, Shen H, Jensen K et al. Generation of a squeezed state of an oscillator by stroboscopic back-action-evading measurement[J]. Nature Physics, 11, 389-392(2015).
[51] Schleier-Smith M H, Leroux I D, Vuletić V. Squeezing the collective spin of a dilute atomic ensemble by cavity feedback[J]. Physical Review A, 81, 021804(2010).
[52] Chen Z L, Bohnet J G, Weiner J M et al. Cavity-aided nondemolition measurements for atom counting and spin squeezing[J]. Physical Review A, 89, 043837(2014).
[53] Hosten O, Engelsen N J, Krishnakumar R et al. Measurement noise 100 times lower than the quantum-projection limit using entangled atoms[J]. Nature, 529, 505-508(2016).
[54] Chen Z L, Bohnet J G, Sankar S R et al. Conditional spin squeezing of a large ensemble via the vacuum Rabi splitting[J]. Physical Review Letters, 106, 133601(2011).
[55] Cox K C, Greve G P, Weiner J M et al. Deterministic squeezed states with collective measurements and feedback[J]. Physical Review Letters, 116, 093602(2016).
[56] Sørensen A, Duan L M, Cirac J I et al. Many-particle entanglement with Bose-Einstein condensates[J]. Nature, 409, 63-66(2001).
[57] Kuzmich A, Mølmer K, Polzik E S. Spin squeezing in an ensemble of atoms illuminated with squeezed light[J]. Physical Review Letters, 79, 4782-4785(1997).
[58] Hammerer K, Sørensen A S, Polzik E S. Quantum interface between light and atomic ensembles[J]. Reviews of Modern Physics, 82, 1041-1093(2010).
[59] Hald J, Sørensen J L, Schori C et al. Spin squeezed atoms: a macroscopic entangled ensemble created by light[J]. Physical Review Letters, 83, 1319-1322(1999).
[60] Fleischhauer M, Lukin M D. Dark-state polaritons in electromagnetically induced transparency[J]. Physical Review Letters, 84, 5094-5097(2000).
[61] Fernholz T, Krauter H, Jensen K et al. Spin squeezing of atomic ensembles via nuclear-electronic spin entanglement[J]. Physical Review Letters, 101, 073601(2008).
[62] Leroux I D, Schleier-Smith M H, Vuletić V. Orientation-dependent entanglement lifetime in a squeezed atomic clock[J]. Physical Review Letters, 104, 250801(2010).
[63] Malia B K, Wu Y F, Martínez-Rincón J et al. Distributed quantum sensing with mode-entangled spin-squeezed atomic states[J]. Nature, 612, 661-665(2022).
[64] Leroux I D, Schleier-Smith M H, Vuletić V. Implementation of cavity squeezing of a collective atomic spin[J]. Physical Review Letters, 104, 073602(2010).
[65] Schioppo M, Brown R C, McGrew W F et al. Ultrastable optical clock with two cold-atom ensembles[J]. Nature Photonics, 11, 48-52(2017).
[66] Norcia M A, Young A W, Eckner W J et al. Seconds-scale coherence on an optical clock transition in a tweezer array[J]. Science, 366, 93-97(2019).
[67] Braverman B, Kawasaki A, Pedrozo-Peñafiel E et al. Near-unitary spin squeezing in Yb171[J]. Physical Review Letters, 122, 223203(2019).
[68] Vallet G, Bookjans E, Eismann U et al. A noise-immune cavity-assisted non-destructive detection for an optical lattice clock in the quantum regime[J]. New Journal of Physics, 19, 083002(2017).
[69] Hobson R, Bowden W, Vianello A et al. Cavity-enhanced non-destructive detection of atoms for an optical lattice clock[J]. Optics Express, 27, 37099-37110(2019).
[70] Bowden W, Vianello A, Hill I R et al. Improving the Q factor of an optical atomic clock using quantum nondemolition measurement[J]. Physical Review X, 10, 041052(2020).
[71] Muniz J A, Young D J, Cline J R K et al. Cavity-QED measurements of the 87Sr millihertz optical clock transition and determination of its natural linewidth[J]. Physical Review Research, 3, 023152(2021).
[72] Salvi L, Poli N, Vuletić V et al. Squeezing on momentum states for atom interferometry[J]. Physical Review Letters, 120, 033601(2018).
[73] Wang E L, Verma G, Tinsley J N et al. Method for the differential measurement of phase shifts induced by atoms in an optical ring cavity[J]. Physical Review A, 103, 022609(2021).
[74] Hu L, Poli N, Salvi L et al. Atom interferometry with the Sr optical clock transition[J]. Physical Review Letters, 119, 263601(2017).
[75] Hu L, Wang E L, Salvi L et al. Sr atom interferometry with the optical clock transition as a gravimeter and a gravity gradiometer[J]. Classical and Quantum Gravity, 37, 014001(2020).
[76] Rudolph J, Wilkason T, Nantel M et al. Large momentum transfer clock atom interferometry on the 689 nm intercombination line of strontium[J]. Physical Review Letters, 124, 083604(2020).
[77] Zhang J L, Mølmer K. Prediction and retrodiction with continuously monitored Gaussian states[J]. Physical Review A, 96, 062131(2017).
[78] Abe M, Adamson P, Borcean M et al. Matter-wave atomic gradiometer interferometric sensor (MAGIS-100)[J]. Quantum Science and Technology, 6, 044003(2021).
[79] Awschalom D D, Bernien H, Brown R et al. A roadmap for quantum interconnects[R](2022).
[80] Zhang X, del Aguila R P, Mazzoni T et al. Trapped-atom interferometer with ultracold Sr atoms[J]. Physical Review A, 94, 043608(2016).
[81] Schleier-Smith M H, Leroux I D, Vuletić V. States of an ensemble of two-level atoms with reduced quantum uncertainty[J]. Physical Review Letters, 104, 073604(2010).
[82] Nshii C C, Vangeleyn M, Cotter J P et al. A surface-patterned chip as a strong source of ultracold atoms for quantum technologies[J]. Nature Nanotechnology, 8, 321-324(2013).
[83] Chen L, Huang C J, Xu X B et al. Planar integrated magneto optical trap[J]. Physical Review Applied, 17, 034031(2022).
[84] Zhu L X, Liu X, Sain B et al. A dielectric metasurface optical chip for the generation of cold atoms[J]. Science Advances, 6, eabb6667(2020).
[85] Li W W, Liu Q, Liang A A et al. Integrated design and realization of two-dimensional magneto-optical trap for ultra-cold atomic physics rack in space[J]. Chinese Journal of Lasers, 49, 1112001(2022).