• Laser & Optoelectronics Progress
  • Vol. 61, Issue 9, 0900001 (2024)
Enlong Wang1,2, Guochao Wang3,**, Lingxiao Zhu3, Jintian Bian1,2..., Xi Wang1,2 and Hui Kong1,2,*|Show fewer author(s)
Author Affiliations
  • 1State Key Laboratory of Pulsed Power Laser Technology, National University of Defense Technology, Hefei 230037, Anhui, China
  • 2Advanced Laser Technology Laboratory of Anhui Province, Hefei 230037, Anhui, China
  • 3College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, Hunan, China
  • show less
    DOI: 10.3788/LOP230714 Cite this Article Set citation alerts
    Enlong Wang, Guochao Wang, Lingxiao Zhu, Jintian Bian, Xi Wang, Hui Kong. Progress of Atomic Spin Squeezing and Its Applications in Quantum Precision Measurement[J]. Laser & Optoelectronics Progress, 2024, 61(9): 0900001 Copy Citation Text show less
    References

    [1] Ludlow A D, Boyd M M, Ye J et al. Optical atomic clocks[J]. Reviews of Modern Physics, 87, 637-701(2015).

    [2] Lu X T, Chang H. Progress of optical lattice atomic clocks[J]. Acta Optica Sinica, 42, 0327004(2022).

    [3] Tino G M. Testing gravity with cold atom interferometry: results and prospects[J]. Quantum Science and Technology, 6, 024014(2021).

    [4] Savoie D, Altorio M, Fang B et al. Interleaved atom interferometry for high-sensitivity inertial measurements[J]. Science Advances, 4, eaau7948(2018).

    [5] Budker D, Romalis M. Optical magnetometry[J]. Nature Physics, 3, 227-234(2007).

    [6] Bothwell T, Kennedy C J, Aeppli A et al. Resolving the gravitational redshift across a millimetre-scale atomic sample[J]. Nature, 602, 420-424(2022).

    [7] Kasevich M A, Chu S. Atomic interferometry using stimulated Raman transitions[J]. Physical Review Letters, 67, 181-184(1991).

    [8] Wasilewski W, Jensen K, Krauter H et al. Quantum noise limited and entanglement-assisted magnetometry[J]. Physical Review Letters, 104, 133601(2010).

    [9] Rosi G, Sorrentino F, Cacciapuoti L et al. Precision measurement of the Newtonian gravitational constant using cold atoms[J]. Nature, 510, 518-521(2014).

    [10] Parker R H, Yu C H, Zhong W C et al. Measurement of the fine-structure constant as a test of the Standard Model[J]. Science, 360, 191-195(2018).

    [11] Rosi G, D’Amico G, Cacciapuoti L et al. Quantum test of the equivalence principle for atoms in coherent superposition of internal energy states[J]. Nature Communications, 8, 1-6(2017).

    [12] Yu N, Tinto M. Gravitational wave detection with single-laser atom interferometers[J]. General Relativity and Gravitation, 43, 1943-1952(2011).

    [13] Graham P W, Hogan J M, Kasevich M A et al. New method for gravitational wave detection with atomic sensors[J]. Physical Review Letters, 110, 171102(2013).

    [14] Chaibi W, Geiger R, Canuel B et al. Low frequency gravitational wave detection with ground-based atom interferometer arrays[J]. Physical Review D, 93, 021101(2016).

    [15] Arvanitaki A, Graham P W, Hogan J M et al. Search for light scalar dark matter with atomic gravitational wave detectors[J]. Physical Review D, 97, 075020(2018).

    [16] Safronova M, Budker D, DeMille D et al. Search for new physics with atoms and molecules[J]. Reviews of Modern Physics, 90, 025008(2018).

    [17] Stray B, Lamb A, Kaushik A et al. Quantum sensing for gravity cartography[J]. Nature, 602, 590-594(2022).

    [18] Wineland D J, Bollinger J J, Itano W M et al. Spin squeezing and reduced quantum noise in spectroscopy[J]. Physical Review A, 46, R6797-R6800(1992).

    [19] Kitagawa M, Ueda M. Squeezed spin states[J]. Physical Review A, 47, 5138-5143(1993).

    [20] Qin Z Z, Wang M H, Ma R et al. Progress of the squeezed states of light and their application[J]. Laser & Optoelectronics Progress, 59, 1100001(2022).

    [21] Liu Y Z, Zuo X J, Yan Z H et al. Analysis of quantum interferometer based on optical parametric amplifier[J]. Acta Optica Sinica, 42, 0327013(2022).

    [22] Aasi J, Abadie J, Abbott B P et al. Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light[J]. Nature Photonics, 7, 613-619(2013).

    [23] Bohnet J G, Sawyer B C, Britton J W et al. Quantum spin dynamics and entanglement generation with hundreds of trapped ions[J]. Science, 352, 1297-1301(2016).

    [24] Nichol B C, Srinivas R, Nadlinger D P et al. An elementary quantum network of entangled optical atomic clocks[J]. Nature, 609, 689-694(2022).

    [25] Anders F, Idel A, Feldmann P et al. Momentum entanglement for atom interferometry[J]. Physical Review Letters, 127, 140402(2021).

    [26] Pezzè L, Smerzi A, Oberthaler M K et al. Quantum metrology with nonclassical states of atomic ensembles[J]. Reviews of Modern Physics, 90, 035005(2018).

    [27] Gross C. Spin squeezing, entanglement and quantum metrology with Bose-Einstein condensates[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 45, 103001(2012).

    [28] Ma J, Wang X G, Sun C P et al. Quantum spin squeezing[J]. Physics Reports, 509, 89-165(2011).

    [29] Pedrozo-Peñafiel E, Colombo S, Shu C et al. Entanglement on an optical atomic-clock transition[J]. Nature, 588, 414-418(2020).

    [30] Greve G P, Luo C, Wu B et al. Entanglement-enhanced matter-wave interferometry in a high-finesse cavity[J]. Nature, 610, 472-477(2022).

    [31] Robinson J M, Miklos M, Tso Y M et al. Direct comparison of two spin squeezed optical clocks below the quantum projection noise limit[EB/OL]. https://arxiv.org/abs/2211.08621

    [32] Bao H, Duan J L, Jin S C et al. Spin squeezing of 1011 atoms by prediction and retrodiction measurements[J]. Nature, 581, 159-163(2020).

    [33] Jin S C, Bao H, Duan J L et al. Adiabaticity in state preparation for spin squeezing of large atom ensembles[J]. Photonics Research, 9, 2296-2302(2021).

    [34] Huang L G, Chen F, Li X W et al. Dynamic synthesis of Heisenberg-limited spin squeezing[J]. Npj Quantum Information, 7, 1-7(2021).

    [35] Zhang Y C, Zhou X F, Zhou X X et al. Cavity-assisted single-mode and two-mode spin-squeezed states via phase-locked atom-photon coupling[J]. Physical Review Letters, 118, 083604(2017).

    [36] Ma X X, Zhang X, Huang K K et al. Low noise measurement method based on differential optical interferometer for cold atom experiments[J]. Optics Express, 28, 175-183(2020).

    [37] Jiao G F, Zhang K Y, Chen L Q et al. Quantum non-demolition measurement based on an SU(1, 1)-SU(2)-concatenated atom-light hybrid interferometer[J]. Photonics Research, 10, 475-482(2022).

    [38] Bai S Y, An J H. Generating stable spin squeezing by squeezed-reservoir engineering[J]. Physical Review Letters, 127, 083602(2021).

    [39] Dicke R H. Coherence in spontaneous radiation processes[J]. Physical Review, 93, 99(1954).

    [40] Mandel L, Wolf E[M]. Optical coherence and quantum optics(1995).

    [41] Wineland D J, Bollinger J J, Itano W M et al. Squeezed atomic states and projection noise in spectroscopy[J]. Physical Review A, 50, 67(1994).

    [42] Chen Z L. Breaking quantum limits with collective cavity-QED: generation of spin squeezed states via quantum non-demolition measurements[D](2013).

    [43] Ren Z H, Li W D, Smerzi A et al. Metrological detection of multipartite entanglement from young diagrams[J]. Physical Review Letters, 126, 080502(2021).

    [44] Leibfried D, Barrett M D, Schaetz T et al. Toward Heisenberg-limited spectroscopy with multiparticle entangled states[J]. Science, 304, 1476-1478(2004).

    [45] Zhang Z, Duan L M. Quantum metrology with Dicke squeezed states[J]. New Journal of Physics, 16, 103037(2014).

    [46] Leroux I D. Squeezing collective atomic spins with an optical resonator[D](2011).

    [47] Tanji-Suzuki H, Leroux I D, Schleier-Smith M H et al. Interaction between atomic ensembles and optical resonators: classical description[EB/OL]. https://arxiv.org/abs/1104.3594

    [48] Appel J, Windpassinger P J, Oblak D et al. Mesoscopic atomic entanglement for precision measurements beyond the standard quantum limit[J]. Proceedings of the National Academy of Sciences of the United States of America, 106, 10960-10965(2009).

    [49] Louchet-Chauvet A, Appel J, Renema J J et al. Entanglement-assisted atomic clock beyond the projection noise limit[J]. New Journal of Physics, 12, 065032(2010).

    [50] Vasilakis G, Shen H, Jensen K et al. Generation of a squeezed state of an oscillator by stroboscopic back-action-evading measurement[J]. Nature Physics, 11, 389-392(2015).

    [51] Schleier-Smith M H, Leroux I D, Vuletić V. Squeezing the collective spin of a dilute atomic ensemble by cavity feedback[J]. Physical Review A, 81, 021804(2010).

    [52] Chen Z L, Bohnet J G, Weiner J M et al. Cavity-aided nondemolition measurements for atom counting and spin squeezing[J]. Physical Review A, 89, 043837(2014).

    [53] Hosten O, Engelsen N J, Krishnakumar R et al. Measurement noise 100 times lower than the quantum-projection limit using entangled atoms[J]. Nature, 529, 505-508(2016).

    [54] Chen Z L, Bohnet J G, Sankar S R et al. Conditional spin squeezing of a large ensemble via the vacuum Rabi splitting[J]. Physical Review Letters, 106, 133601(2011).

    [55] Cox K C, Greve G P, Weiner J M et al. Deterministic squeezed states with collective measurements and feedback[J]. Physical Review Letters, 116, 093602(2016).

    [56] Sørensen A, Duan L M, Cirac J I et al. Many-particle entanglement with Bose-Einstein condensates[J]. Nature, 409, 63-66(2001).

    [57] Kuzmich A, Mølmer K, Polzik E S. Spin squeezing in an ensemble of atoms illuminated with squeezed light[J]. Physical Review Letters, 79, 4782-4785(1997).

    [58] Hammerer K, Sørensen A S, Polzik E S. Quantum interface between light and atomic ensembles[J]. Reviews of Modern Physics, 82, 1041-1093(2010).

    [59] Hald J, Sørensen J L, Schori C et al. Spin squeezed atoms: a macroscopic entangled ensemble created by light[J]. Physical Review Letters, 83, 1319-1322(1999).

    [60] Fleischhauer M, Lukin M D. Dark-state polaritons in electromagnetically induced transparency[J]. Physical Review Letters, 84, 5094-5097(2000).

    [61] Fernholz T, Krauter H, Jensen K et al. Spin squeezing of atomic ensembles via nuclear-electronic spin entanglement[J]. Physical Review Letters, 101, 073601(2008).

    [62] Leroux I D, Schleier-Smith M H, Vuletić V. Orientation-dependent entanglement lifetime in a squeezed atomic clock[J]. Physical Review Letters, 104, 250801(2010).

    [63] Malia B K, Wu Y F, Martínez-Rincón J et al. Distributed quantum sensing with mode-entangled spin-squeezed atomic states[J]. Nature, 612, 661-665(2022).

    [64] Leroux I D, Schleier-Smith M H, Vuletić V. Implementation of cavity squeezing of a collective atomic spin[J]. Physical Review Letters, 104, 073602(2010).

    [65] Schioppo M, Brown R C, McGrew W F et al. Ultrastable optical clock with two cold-atom ensembles[J]. Nature Photonics, 11, 48-52(2017).

    [66] Norcia M A, Young A W, Eckner W J et al. Seconds-scale coherence on an optical clock transition in a tweezer array[J]. Science, 366, 93-97(2019).

    [67] Braverman B, Kawasaki A, Pedrozo-Peñafiel E et al. Near-unitary spin squeezing in Yb171[J]. Physical Review Letters, 122, 223203(2019).

    [68] Vallet G, Bookjans E, Eismann U et al. A noise-immune cavity-assisted non-destructive detection for an optical lattice clock in the quantum regime[J]. New Journal of Physics, 19, 083002(2017).

    [69] Hobson R, Bowden W, Vianello A et al. Cavity-enhanced non-destructive detection of atoms for an optical lattice clock[J]. Optics Express, 27, 37099-37110(2019).

    [70] Bowden W, Vianello A, Hill I R et al. Improving the Q factor of an optical atomic clock using quantum nondemolition measurement[J]. Physical Review X, 10, 041052(2020).

    [71] Muniz J A, Young D J, Cline J R K et al. Cavity-QED measurements of the 87Sr millihertz optical clock transition and determination of its natural linewidth[J]. Physical Review Research, 3, 023152(2021).

    [72] Salvi L, Poli N, Vuletić V et al. Squeezing on momentum states for atom interferometry[J]. Physical Review Letters, 120, 033601(2018).

    [73] Wang E L, Verma G, Tinsley J N et al. Method for the differential measurement of phase shifts induced by atoms in an optical ring cavity[J]. Physical Review A, 103, 022609(2021).

    [74] Hu L, Poli N, Salvi L et al. Atom interferometry with the Sr optical clock transition[J]. Physical Review Letters, 119, 263601(2017).

    [75] Hu L, Wang E L, Salvi L et al. Sr atom interferometry with the optical clock transition as a gravimeter and a gravity gradiometer[J]. Classical and Quantum Gravity, 37, 014001(2020).

    [76] Rudolph J, Wilkason T, Nantel M et al. Large momentum transfer clock atom interferometry on the 689 nm intercombination line of strontium[J]. Physical Review Letters, 124, 083604(2020).

    [77] Zhang J L, Mølmer K. Prediction and retrodiction with continuously monitored Gaussian states[J]. Physical Review A, 96, 062131(2017).

    [78] Abe M, Adamson P, Borcean M et al. Matter-wave atomic gradiometer interferometric sensor (MAGIS-100)[J]. Quantum Science and Technology, 6, 044003(2021).

    [79] Awschalom D D, Bernien H, Brown R et al. A roadmap for quantum interconnects[R](2022).

    [80] Zhang X, del Aguila R P, Mazzoni T et al. Trapped-atom interferometer with ultracold Sr atoms[J]. Physical Review A, 94, 043608(2016).

    [81] Schleier-Smith M H, Leroux I D, Vuletić V. States of an ensemble of two-level atoms with reduced quantum uncertainty[J]. Physical Review Letters, 104, 073604(2010).

    [82] Nshii C C, Vangeleyn M, Cotter J P et al. A surface-patterned chip as a strong source of ultracold atoms for quantum technologies[J]. Nature Nanotechnology, 8, 321-324(2013).

    [83] Chen L, Huang C J, Xu X B et al. Planar integrated magneto optical trap[J]. Physical Review Applied, 17, 034031(2022).

    [84] Zhu L X, Liu X, Sain B et al. A dielectric metasurface optical chip for the generation of cold atoms[J]. Science Advances, 6, eabb6667(2020).

    [85] Li W W, Liu Q, Liang A A et al. Integrated design and realization of two-dimensional magneto-optical trap for ultra-cold atomic physics rack in space[J]. Chinese Journal of Lasers, 49, 1112001(2022).

    Enlong Wang, Guochao Wang, Lingxiao Zhu, Jintian Bian, Xi Wang, Hui Kong. Progress of Atomic Spin Squeezing and Its Applications in Quantum Precision Measurement[J]. Laser & Optoelectronics Progress, 2024, 61(9): 0900001
    Download Citation