• Electronics Optics & Control
  • Vol. 32, Issue 3, 69 (2025)
LEI Bangjun1,2,3 and ZHU Han1,2,3
Author Affiliations
  • 1Hubei Key Laboratory of Intelligent Visual Monitoring for Hydropower Engineering,Yichang 443000,China
  • 2School of Computer and Information,China Three Gorges University,Yichang 443000,China
  • 3Yichang Key Laboratory of Hydropower Engineering Vision Supervision,Yichang 443000,China
  • show less
    DOI: 10.3969/j.issn.1671-637x.2025.03.011 Cite this Article
    LEI Bangjun, ZHU Han. Rotating Target Detection in Remote Sensing Images Based on Context Space Perception[J]. Electronics Optics & Control, 2025, 32(3): 69 Copy Citation Text show less
    References

    [1] GIRSHICK R,DONAHUE J,DARRELL T,et al. Rich feature hierarchies for accurate object detection and semantic segmentation [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Columbus: IEEE,2014: 580-587.

    [2] GIRSHICK R. Fast R-CNN [C]//2015 IEEE International Conference on Computer Vision (ICCV). Santiago: IEEE,2015: 1440-1448.

    [3] REDMON J,DIVVALA S,GIRSHICK R,et al. You only look once: unified,real-time object detection [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Las Vegas: IEEE,2016: 779-788.

    [4] REDMON J,FARHADI A. YOLOv3: an incremental improvement [R]. Los Alamos: arXiv Preprint,2018: arXiv: 1804.02767.

    [5] ZHU X K,LYU S C,WANG X,et al. TPH-YOLOv5: improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios [C]//2021 IEEE/CVF International Conference on Computer Vision Workshops(ICCVW). Montreal: IEEE,2021: 2778-2788.

    [6] REDMON J,FARHADI A. YOLO9000: better,faster,stronger [C]//2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Honolulu: IEEE,2017: 6517-6525.

    [7] LIU W,ANGUELOV D,ERHAN D,et al. SSD: single shot multibox detector [C]//European Conference on Computer Vision(ECCV). Cham: Springer,2016: 21-37.

    [8] GUO W,YANG W,ZHANG H J,et al. Geospatial object detection in high resolution satellite images based on multi-scale convolutional neural network [J]. Remote Sensing,2018,10(1):131.

    [11] ZHANG F,WANG X Y,ZHOU S L,et al. Arbitrary-oriented ship detection through center-head point extraction [J]. IEEE Transactions on Geoscience and Remote Sensing,2021,60:5612414.

    [12] WANG K X,LIEW H J,ZOU Y T,et al. PaNet: few-shot image semantic segmentation with prototype alignment [C]//2019 IEEE/CVF International Conference on Computer Vision Workshops(ICCVW). Seoul: IEEE,2019: 9197-9206.

    [13] LIN T Y,DOLLAR P,GIRSHICK R,et al. Feature pyramid networks for object detection [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Honolulu: IEEE,2017: 936-944.

    [14] ZHENG Z H,WANG P,LIU W,et al. Distance-IoU loss: faster and better learning for bounding box regression [J]. AAAI-20 Technical Tracks 7,2020,34(7): 12993-13000.

    [15] HOU Q B,ZHOU D Q,FENG J S. Coordinate attention for efficient mobile network design [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Nashville: IEEE,2021: 13713-13722.

    [16] HOWARD A G,ZHU M L,CHEN B,et al. MobileNets: efficient convolutional neural networks for mobile vision applications [R]. Los Alamos: arXiv Preprint,2017: arXiv: 1704.04861.

    [17] YANG L X,ZHANG R Y,LI L D,et al. SimAM: a simple,parameter-free attention module for convolutional neural networks [C]//International Conference on Machine Learning. New York: PMLR,2021: 11863-11874.

    [18] YANG X,YAN J C,MING Q,et al. Rethinking rotated object detection with Gaussian wasserstein distance loss [C]//International Conference on Machine Learning. New York: PMLR,2021: 11830-11841.

    [19] JIANG Y Y,ZHU X Y,WANG X B,et al. R2CNN: rotational region CNN for orientation robust scene text detection [R]. Los Alamos: arXiv Preprint,2017: arXiv: 1706.09579.

    [20] MA J Q,SHAO W Y,YE H,et al. Arbitrary-oriented scene text detection via rotation proposals [J]. IEEE Transactions on Multimedia,2018,20(11):3111-3122.

    [21] YANG X,YAN J C,FENG Z M,et al. R3Det: refined single-stage detector with feature refinement for rotating object [J]. AAAI-21 Technical Tracks 4,2021,35(4): 3163-3171.

    [22] LU D C,LI D M,LI Y L,et al. OSKDet: orientation-sensitive keypoint localization for rotated object detection [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). New Orleans: IEEE,2022: 1182-1192.