[1] GIRSHICK R,DONAHUE J,DARRELL T,et al. Rich feature hierarchies for accurate object detection and semantic segmentation [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Columbus: IEEE,2014: 580-587.
[2] GIRSHICK R. Fast R-CNN [C]//2015 IEEE International Conference on Computer Vision (ICCV). Santiago: IEEE,2015: 1440-1448.
[3] REDMON J,DIVVALA S,GIRSHICK R,et al. You only look once: unified,real-time object detection [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Las Vegas: IEEE,2016: 779-788.
[4] REDMON J,FARHADI A. YOLOv3: an incremental improvement [R]. Los Alamos: arXiv Preprint,2018: arXiv: 1804.02767.
[5] ZHU X K,LYU S C,WANG X,et al. TPH-YOLOv5: improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios [C]//2021 IEEE/CVF International Conference on Computer Vision Workshops(ICCVW). Montreal: IEEE,2021: 2778-2788.
[6] REDMON J,FARHADI A. YOLO9000: better,faster,stronger [C]//2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Honolulu: IEEE,2017: 6517-6525.
[7] LIU W,ANGUELOV D,ERHAN D,et al. SSD: single shot multibox detector [C]//European Conference on Computer Vision(ECCV). Cham: Springer,2016: 21-37.
[8] GUO W,YANG W,ZHANG H J,et al. Geospatial object detection in high resolution satellite images based on multi-scale convolutional neural network [J]. Remote Sensing,2018,10(1):131.
[11] ZHANG F,WANG X Y,ZHOU S L,et al. Arbitrary-oriented ship detection through center-head point extraction [J]. IEEE Transactions on Geoscience and Remote Sensing,2021,60:5612414.
[12] WANG K X,LIEW H J,ZOU Y T,et al. PaNet: few-shot image semantic segmentation with prototype alignment [C]//2019 IEEE/CVF International Conference on Computer Vision Workshops(ICCVW). Seoul: IEEE,2019: 9197-9206.
[13] LIN T Y,DOLLAR P,GIRSHICK R,et al. Feature pyramid networks for object detection [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Honolulu: IEEE,2017: 936-944.
[14] ZHENG Z H,WANG P,LIU W,et al. Distance-IoU loss: faster and better learning for bounding box regression [J]. AAAI-20 Technical Tracks 7,2020,34(7): 12993-13000.
[15] HOU Q B,ZHOU D Q,FENG J S. Coordinate attention for efficient mobile network design [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Nashville: IEEE,2021: 13713-13722.
[16] HOWARD A G,ZHU M L,CHEN B,et al. MobileNets: efficient convolutional neural networks for mobile vision applications [R]. Los Alamos: arXiv Preprint,2017: arXiv: 1704.04861.
[17] YANG L X,ZHANG R Y,LI L D,et al. SimAM: a simple,parameter-free attention module for convolutional neural networks [C]//International Conference on Machine Learning. New York: PMLR,2021: 11863-11874.
[18] YANG X,YAN J C,MING Q,et al. Rethinking rotated object detection with Gaussian wasserstein distance loss [C]//International Conference on Machine Learning. New York: PMLR,2021: 11830-11841.
[19] JIANG Y Y,ZHU X Y,WANG X B,et al. R2CNN: rotational region CNN for orientation robust scene text detection [R]. Los Alamos: arXiv Preprint,2017: arXiv: 1706.09579.
[20] MA J Q,SHAO W Y,YE H,et al. Arbitrary-oriented scene text detection via rotation proposals [J]. IEEE Transactions on Multimedia,2018,20(11):3111-3122.
[21] YANG X,YAN J C,FENG Z M,et al. R3Det: refined single-stage detector with feature refinement for rotating object [J]. AAAI-21 Technical Tracks 4,2021,35(4): 3163-3171.
[22] LU D C,LI D M,LI Y L,et al. OSKDet: orientation-sensitive keypoint localization for rotated object detection [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). New Orleans: IEEE,2022: 1182-1192.