• Laser & Optoelectronics Progress
  • Vol. 60, Issue 12, 1215001 (2023)
Yuanyuan Huang1, Wenbo Xiong1, Hongwei Zhang1,2,*, and Weiwei Zhang1
Author Affiliations
  • 1School of Electronic Information, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China
  • 2State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, Zhejiang, China
  • show less
    DOI: 10.3788/LOP220691 Cite this Article Set citation alerts
    Yuanyuan Huang, Wenbo Xiong, Hongwei Zhang, Weiwei Zhang. Yarn-Dyed Fabric Defect Detection Based on U-Shaped Swin Transformer Auto-Encoder[J]. Laser & Optoelectronics Progress, 2023, 60(12): 1215001 Copy Citation Text show less
    References

    [1] Zhou X X, Liang H E, Chen X X et al. Sensibility assessment of spring and summer shirt yarn-dyed fabrics[J]. Journal of Textile Research, 37, 59-64(2016).

    [2] Kumar A. Computer-vision-based fabric defect detection: a survey[J]. IEEE Transactions on Industrial Electronics, 55, 348-363(2008).

    [3] Ren H H, Jing J F, Zhang H H et al. Cross-printing defect detection of printed fabric using GIS and FTDT[J]. Laser & Optoelectronics Progress, 56, 131005(2019).

    [4] Lu R S, Wu A, Zhang T D et al. Review on automated optical (visual) inspection and its applications in defect detection[J]. Acta Optica Sinica, 38, 0815002(2018).

    [5] Hua C J, Sun K K, Chen Y. Image segmentation algorithm of mesh fabric based on regional minimum gray value[J]. Laser & Optoelectronics Progress, 58, 0210014(2021).

    [6] Li Y Y, Luo H C, Yu M M et al. Fabric defect detection algorithm using RDPSO-based optimal Gabor filter[J]. The Journal of the Textile Institute, 110, 487-495(2019).

    [7] Ren M F, Zhu L, Ma X M et al. Fabric defect detection method based on coarseness measurement and color distance[J]. Laser&Optoelectronics Progress, 58, 0410008(2021).

    [8] Zhou Z Y, Wang C, Gao X et al. Fabric defect detection and classifier via multi-scale dictionary learning and an adaptive differential evolution optimized regularization extreme learning machine[J]. Fibres and Textiles in Eastern Europe, 27, 67-77(2019).

    [9] Li Y D, Zhao W G, Pan J H. Deformable patterned fabric defect detection with fisher criterion-based deep learning[J]. IEEE Transactions on Automation Science and Engineering, 14, 1256-1264(2017).

    [10] Zhou J, Jing J F, Zhang H H et al. Real-time fabric defect detection algorithm based on S-YOLOV3 model[J]. Laser & Optoelectronics Progress, 57, 161001(2020).

    [11] Jing J F, Wang Z, Rätsch M et al. Mobile-Unet: an efficient convolutional neural network for fabric defect detection[J]. Textile Research Journal, 92, 30-42(2022).

    [12] Mei S, Yang H, Yin Z P. An unsupervised-learning-based approach for automated defect inspection on textured surfaces[J]. IEEE Transactions on Instrumentation and Measurement, 67, 1266-1277(2018).

    [13] Zhang H W, Tang W B, Li P F et al. Defect detection and location of yarn-dyed shirt piece based on denoising convolutional autoencoder[J]. Basic Sciences Journal of Textile Universities, 32, 119-125, 132(2019).

    [14] Zhang H W, Tan Q L, Lu S et al. Yarn-dyed shirt piece defect detection based on an unsupervised reconstruction model of the U-shaped denoising convolutional auto-encoder[J]. Journal of Xidian University, 48, 123-130(2021).

    [15] Vaswani A, Shazeer N, Parmar N et al. Attention is all you need[EB/OL]. https://arxiv.org/abs/1706.03762

    [16] Dosovitskiy A, Beyer L, Kolesnikov A et al. An image is worthv16x16 words: transformers for image recognition at scale[EB/OL]. https://arxiv.org/abs/2010.11929

    [17] He L Y, Bai J Q, He X et al. Remote sensing rotated object detection based on sparse transformer[J]. Laser & Optoelectronics Progress, 59, 1810003(2022).

    [18] Strudel R, Garcia R, Laptev I et al. Segmenter: transformer for semantic segmentation[C], 7242-7252(2021).

    [19] Chen M, Radford A, Child R et al. Generative pretraining from pixels[C], 1691-1703(2020).

    [20] Liu Z, Lin Y T, Cao Y et al. Swin transformer: hierarchical vision transformer using shifted windows[C], 9992-10002(2021).

    [21] Zhang H W. Yarn-dyed fabric image dataset version1[DB/OL]. http://github.com/ZHW-AI/YDFID-1

    [22] Liu Y H, Yao J, Lu X H et al. DeepCrack: a deep hierarchical feature learning architecture for crack segmentation[J]. Neurocomputing, 338, 139-153(2019).

    Yuanyuan Huang, Wenbo Xiong, Hongwei Zhang, Weiwei Zhang. Yarn-Dyed Fabric Defect Detection Based on U-Shaped Swin Transformer Auto-Encoder[J]. Laser & Optoelectronics Progress, 2023, 60(12): 1215001
    Download Citation