• Laser & Optoelectronics Progress
  • Vol. 60, Issue 2, 0215001 (2023)
Rongrong Wang1 and Zhongyun Jiang2,*
Author Affiliations
  • 1College of Information, Shanghai Ocean University, Shanghai 201306, China
  • 2College of Information Technology, Shanghai Jian Qiao University, Shanghai 201306, China
  • show less
    DOI: 10.3788/LOP212230 Cite this Article Set citation alerts
    Rongrong Wang, Zhongyun Jiang. Underwater Object Detection Algorithm Based on Improved CenterNet[J]. Laser & Optoelectronics Progress, 2023, 60(2): 0215001 Copy Citation Text show less
    Model structure. (a) HRNet; (b) BAM; (c) FFM; (d) detection module
    Fig. 1. Model structure. (a) HRNet; (b) BAM; (c) FFM; (d) detection module
    HRNet structure
    Fig. 2. HRNet structure
    BAM structure
    Fig. 3. BAM structure
    Feature fusion model
    Fig. 4. Feature fusion model
    RFB model
    Fig. 5. RFB model
    Example images. (a) Scallop; (b) holothurian; (c) starfish; (d) echinus
    Fig. 6. Example images. (a) Scallop; (b) holothurian; (c) starfish; (d) echinus
    Sample distribution
    Fig. 7. Sample distribution
    Comparison of detection results of different networks. (a) (c) (e) (g) CenterNet algorithm; (b) (d) (f) (h) proposed algorithm
    Fig. 8. Comparison of detection results of different networks. (a) (c) (e) (g) CenterNet algorithm; (b) (d) (f) (h) proposed algorithm
    Detection accuracy of different categories
    Fig. 9. Detection accuracy of different categories
    NetStage 1Stage 2Stage 3Stage 4Resolution
    Subnet_11×1,643×3,641×1,256×4×13×3,323×3,32×4×13×3,323×3,32×4×43×3,323×3,32×4×3
    Subnet_23×3,643×3,64×4×13×3,643×3,64×4×43×3,643×3,64×4×3
    Subnet_33×3,1283×3,128×4×43×3,1283×3,128×4×316×
    Subnet_43×3,2563×3,256×4×332×
    Table 1. Backbone network structure parameters
    AlgorithmBacbone neworkSizeGPUmAP /%FPS
    Fast R-CNNVGG-16~1000×600Tian X70.00.5
    Reference [21ResNet-50RTX 2080Ti72.6
    Faster R-CNNResNet-101~1000×600Tian X76.45.0
    SSD300VGG-16300×300Tian X77.145
    SSDVGG-16320×320Tian X77.511.2
    YOLOv3Darknet-53554×554Tian X79.326.0
    RetinaNetResNet-101~1000×600RTX2080 S75.38.8
    Proposed algorithmFA-HRNet384×384RTX2080 S78.17.0
    FA-HRNet512×512RTX2080 S79.56.7
    Table 2. PASCAL VOC dataset test results
    AlgorithmNetScallop /%Holothurian /%Starfish /%Echinus /%mAP /%FPS
    CenterNetHourglass-10457.471.886.088.575.95.2
    Proposed algorithmFA-HRNet60.273.385.689.777.47.0
    Table 3. Comparison of detection accuracy and speed with CenterNet algorithm
    AlgorithmNetIpout sizeSize /MBParams /MBGFLOPs /109
    CenterNetHourglass-104384×384765.7191.2164.5
    Proposed algorithmFA-HRNet384×384123.030.432.6
    Table 4. Comparison of model complexity with CenterNet algorithm
    AlgorithmBacbone neworkSize /MBParams /MBGFLOPs /109mAP /%FPS
    Faster R-CNNResNet-101+FPN552.859.591.873.73.5
    Reference [22ResNet-5072.6
    SSDVGG-1692.6124.230.668.616.0
    YOLOv3Darknet-53246.561.532.873.315.0
    RetinaNetResNet-101228.555.2100.672.28.8
    CornerNetHourglass-104804.6201.0453.049.03.1
    ExtremeNetHourglass-104794.1198.3229.953.52.3
    CenterNetHourglass-104765.7191.2164.575.95.2
    Proposed algorithmFA-HRNet123.030.432.677.47.0
    Table 5. Performance comparison with mainstream object detection algorithms
    No.HRNetBAMFFMSize /MBParams /MBGFLOPs /109mAP /%FPS
    1765.7191.24164.5375.95.2
    2115.228.6724.1674.78.2
    3115.628.7424.1776.27.9
    4123.030.3632.5577.47.0
    Table 6. Influence of different modules on detection performance