Rongrong Wang, Zhongyun Jiang. Underwater Object Detection Algorithm Based on Improved CenterNet[J]. Laser & Optoelectronics Progress, 2023, 60(2): 0215001

Search by keywords or author
- Laser & Optoelectronics Progress
- Vol. 60, Issue 2, 0215001 (2023)

Fig. 1. Model structure. (a) HRNet; (b) BAM; (c) FFM; (d) detection module

Fig. 2. HRNet structure

Fig. 3. BAM structure

Fig. 4. Feature fusion model

Fig. 5. RFB model

Fig. 6. Example images. (a) Scallop; (b) holothurian; (c) starfish; (d) echinus

Fig. 7. Sample distribution

Fig. 8. Comparison of detection results of different networks. (a) (c) (e) (g) CenterNet algorithm; (b) (d) (f) (h) proposed algorithm

Fig. 9. Detection accuracy of different categories
|
Table 1. Backbone network structure parameters
|
Table 2. PASCAL VOC dataset test results
|
Table 3. Comparison of detection accuracy and speed with CenterNet algorithm
|
Table 4. Comparison of model complexity with CenterNet algorithm
|
Table 5. Performance comparison with mainstream object detection algorithms
|
Table 6. Influence of different modules on detection performance

Set citation alerts for the article
Please enter your email address