• Photonics Research
  • Vol. 13, Issue 4, 875 (2025)
Ruimin Jie1, Jie Huang1,2, and Chen Zhu1,*
Author Affiliations
  • 1Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, MO 65409, USA
  • 2e-mail: jieh@mst.edu
  • show less
    DOI: 10.1364/PRJ.542584 Cite this Article Set citation alerts
    Ruimin Jie, Jie Huang, Chen Zhu, "Transforming optical Vernier effect into coherent microwave interference towards highly sensitive optical fiber sensing," Photonics Res. 13, 875 (2025) Copy Citation Text show less
    References

    [1] J. Jing, K. Liu, J. Jiang. Performance improvement approaches for optical fiber SPR sensors and their sensing applications. Photon. Res., 10, 126-147(2022).

    [2] C. Caucheteur, T. Guo, J. Albert. Review of plasmonic fiber optic biochemical sensors: improving the limit of detection. Anal. Bioanal. Chem., 407, 3883-3897(2015).

    [3] W. Liu, Z. Liu, Y. Zhang. Specialty optical fibers and 2D materials for sensitivity enhancement of fiber optic SPR sensors: a review. Opt. Laser Technol., 152, 108167(2022).

    [4] D. Pawar, S. N. Kale. A review on nanomaterial-modified optical fiber sensors for gases, vapors and ions. Microchim. Acta, 186(2019).

    [5] R. Tabassum, R. Kant. Recent trends in surface plasmon resonance based fiber–optic gas sensors utilizing metal oxides and carbon nanomaterials as functional entities. Sens. Actuators B, 310, 127813(2020).

    [6] Z. Liu, H.-Y. Tam, L. Htein. Microstructured optical fiber sensors. J. Lightwave Technol., 35, 3425-3439(2017).

    [7] X. Zhang, Y. Yang, H. Bai. Theoretical aspects and sensing demonstrations of cone-shaped inwall capillary-based microsphere resonators. Photon. Res., 5, 516-520(2017).

    [8] H. Bai, S. Li, J. Barreiros. Stretchable distributed fiber-optic sensors. Science, 370, 848-852(2020).

    [9] R. Jie, L. Ma, X. Liu. Wide-frequency-range vibration sensing system based on simple chirped pulse interferometry. IEEE Sens. J., 23, 18257-18266(2023).

    [10] Y. Chen, L. Zhao, S. Hao. Advanced fiber sensors based on the Vernier effect. Sensors, 22, 2694(2022).

    [11] A. D. Gomes, H. Bartelt, O. Frazão. Optical Vernier effect: recent advances and developments. Laser Photon. Rev., 15, 2000588(2021).

    [12] Y. Liu, X. Li, Y.-N. Zhang. Fiber-optic sensors based on Vernier effect. Measurement, 167, 108451(2021).

    [13] R. Ferreira, T. Paixão, G. Lopes. Vernier effect-based optical fiber sensor for humidity and temperature monitoring. IEEE Photon. Technol. Lett., 33, 1061-1064(2021).

    [14] A. D. Gomes, M. S. Ferreira, J. Bierlich. Optical harmonic Vernier effect: a new tool for high performance interferometric fiber sensors. Sensors, 19, 5431(2019).

    [15] C. Zhu, M. Roman, Y. Zhuang. Distributed fiber optic sensing with enhanced sensitivity based on microwave-photonic Vernier effect. Opt. Lett., 47, 2810-2813(2022).

    [16] J. Tian, Z. Li, Y. Sun. High-sensitivity fiber-optic strain sensor based on the Vernier effect and separated Fabry–Perot interferometers. J. Lightwave Technol., 37, 5609-5618(2019).

    [17] S. Marrujo-García, I. Hernández-Romano, D. A. May-Arrioja. In-line Mach–Zehnder interferometers based on a capillary hollow-core fiber using Vernier effect for a highly sensitive temperature sensor. Sensors, 21, 5471(2021).

    [18] J. Deng, D. Wang. Ultra-sensitive strain sensor based on femtosecond laser inscribed in-fiber reflection mirrors and Vernier effect. J. Lightwave Technol., 37, 4935-4939(2019).

    [19] F. Mumtaz, M. Roman, B. Zhang. Highly sensitive strain sensor by utilizing a tunable air reflector and the Vernier effect. Sensors, 22, 7557(2022).

    [20] T. Paixao, R. Ferreira, F. Araujo. Hybrid intrinsic optical fiber sensor fabricated by femtosecond laser with enhanced sensitivity by Vernier effect. Opt. Laser Technol., 133, 106520(2021).

    [21] Y. Li, Y. Li, Y. Liu. Detection limit analysis of optical fiber sensors based on interferometers with the Vernier-effect. Opt. Express, 30, 35734-35748(2022).

    [22] W. Naku, J. Huang, C. Zhu. Optical fiber sensors based on advanced Vernier effect: a review. IEEE Sens. J., 24, 13758-13772(2024).

    [23] Y. Guan, X. Dong. Sensitivity-enhanced flow rate sensor based on Vernier effect with a virtual reference cell. IEEE Sens. J., 22, 23915-23922(2022).

    [24] A. Zornoza, J. A. Flores-Bravo, J. Zubia. Sensitivity magnification of an interferometric optical fiber sensor with a length-linked virtual reference. Opt. Laser Technol., 167, 109819(2023).

    [25] X. Fang, W. Zhang, J. Li. Signal processing assisted Vernier effect in a single interferometer for sensitivity magnification. Opt. Express, 29, 11570-11581(2021).

    [26] C. Zhu, O. Alsalman, W. Naku. Machine learning for a Vernier-effect-based optical fiber sensor. Opt. Lett., 48, 2488-2491(2023).

    [27] C. Zhu, O. Alsalman. Vernier effect-based optical fiber sensor for dynamic sensing using a coarsely resolved spectrometer. Opt. Express, 31, 22250-22259(2023).

    [28] Y. Mei, T. Xia, H. Cai. Deep learning improved spectral demodulation of interferometry Vernier effect for pressure sensing. J. Lightwave Technol., 42, 430-440(2023).

    [29] J. Hervás, A. L. Ricchiuti, W. Li. Microwave photonics for optical sensors. IEEE J. Sel. Top. Quantum Electron., 23, 327-339(2017).

    [30] J. Yao. Microwave photonic sensors. J. Lightwave Technol., 39, 3626-3637(2020).

    [31] P. A. Morton, M. J. Morton. High-power, ultra-low noise hybrid lasers for microwave photonics and optical sensing. J. Lightwave Technol., 36, 5048-5057(2018).

    [32] C. Zhu, J. Huang. Sensitivity-enhanced microwave-photonic optical fiber interferometry based on the Vernier effect. Opt. Express, 29, 16820-16832(2021).

    [33] Z. Xu, X. Shu, H. Fu. Sensitivity enhanced fiber sensor based on a fiber ring microwave photonic filter with the Vernier effect. Opt. Express, 25, 21559-21566(2017).

    [34] C. Zhu, J. Huang. Self-Vernier effect-assisted optical fiber sensor based on microwave photonics and its machine learning analysis. J. Lightwave Technol., 41, 1890-1898(2022).

    [35] R. Li, X. Liu, Y. Chen. Ultra-high sensitivity microwave-photonic sapphire fiber Fabry–Perot interferometry based on the Vernier effect. Opt. Express, 31, 25047-25057(2023).

    [36] M. Wang, A. Zhang, H. Pan. Highly sensitive optical fiber temperature sensor based on microwave photonic filter with enhanced Vernier effect. IEEE Sens. J., 24, 6213-6218(2024).

    [37] S. Chen, P. Pan, T. Xie. Sensitivity enhanced fiber optic temperature sensor based on optical carrier microwave photonic interferometry with harmonic Vernier effect. Opt. Laser Technol., 160, 109029(2023).

    [38] C. Zhu, J. Huang. High-sensitivity optical fiber sensing based on a computational and distributed Vernier effect. Opt. Express, 30, 37566-37578(2022).

    [39] J. Mora, B. Ortega, A. Díez. Photonic microwave tunable single-bandpass filter based on a Mach-Zehnder interferometer. J. Lightwave Technol., 24, 2500-2509(2006).

    [40] N. Wu, M. Xia, Y. Wu. Microwave photonics interrogation for multiplexing fiber Fabry–Perot sensors. Opt. Express, 29, 16652-16664(2021).

    [41] C. Zhu, R. Jie, O. Alsalman. Multi-point optical fiber Fabry–Perot curvature sensor based on microwave photonics. J. Lightwave Technol., 41, 6417-6422(2023).

    [42] R. Jie, H. Zheng, O. Alsalman. High-sensitivity Fabry-Perot interferometric sensor based on microwave photonics with phase demodulation. J. Lightwave Technol., 42, 6958-6966(2024).

    [43] P. Zhang, M. Tang, F. Gao. Cascaded fiber-optic Fabry–Perot interferometers with Vernier effect for highly sensitive measurement of axial strain and magnetic field. Opt. Express, 22, 19581-19588(2014).

    [44] T. Nan, B. Liu, Y. Wu. Ultrasensitive strain sensor based on Vernier-effect improved parallel structured fiber-optic Fabry–Perot interferometer. Opt. Express, 27, 17239-17250(2019).

    [45] L. G. Abbas. Vernier effect-based strain sensor with cascaded Fabry–Pérot interferometers. IEEE Sens. J., 20, 9196-9201(2020).

    [46] T. Paixão, F. Araújo, P. Antunes. Highly sensitive fiber optic temperature and strain sensor based on an intrinsic Fabry–Perot interferometer fabricated by a femtosecond laser. Opt. Lett., 44, 4833-4836(2019).

    [47] M. B. Ayun, A. Schwarzbaum, S. Rosenberg. Photonic radio frequency phase-shift amplification by radio frequency interferometry. Opt. Lett., 40, 4863-4866(2015).

    [48] C. Zhu, R. E. Gerald, J. Huang. Ultra-sensitive microwave-photonic optical fiber interferometry based on phase-shift amplification. IEEE J. Sel. Top. Quantum Electron., 27(2021).

    [49] S. Zheng, W. Rao, X. Cai. Temperature-insensitive fiber-optic refractive index sensing system with high sensitivity by using EFPI based microwave photonic filter. IEEE Sens. J., 24, 2799-2806(2023).

    [50] P. Pan, X. Cai, S. Chen. Highly sensitive fiber-optic humidity-sensing system by using GO-FPI-based microwave photonic filter. IEEE Sens. J., 23, 2236-2240(2022).

    [51] Y. Wang, X. Ni, M. Wang. Demodulation of an optical fiber MEMS pressure sensor based on single bandpass microwave photonic filter. Opt. Express, 25, 644-653(2017).

    [52] Y. Deng, M. Li, N. Huang. Optical length-change measurement based on an incoherent single-bandpass microwave photonic filter with high resolution. Photon. Res., 2, B35-B39(2014).

    [53] T. Zhang, X. Tian, L. Liang. Fabry-Perot interferometer curvature sensor based on microwave photonic filter technique. IEEE Photon. Technol. Lett., 37, 21-24(2024).

    [54] X. Shang, N. Wang, S. Cao. Fiber-integrated force sensor using 3D printed spring-composed Fabry-Perot cavities with a high precision down to tens of piconewton. Adv. Mater., 36, 2305121(2024).

    [55] M. Zou, C. Liao, S. Liu. Fiber-tip polymer clamped-beam probe for high-sensitivity nanoforce measurements. Light Sci. Appl., 10, 171(2021).

    [56] Y. Zhuang, Y. Chen, C. Zhu. Probing changes in tilt angle with 20  nanoradian resolution using an extrinsic Fabry–Perot interferometer-based optical fiber inclinometer. Opt. Express, 26, 2546-2556(2018).

    [57] J. A. Guggenheim, J. Li, T. J. Allen. Ultrasensitive plano-concave optical microresonators for ultrasound sensing. Nat. Photonics, 11, 714-719(2017).

    Ruimin Jie, Jie Huang, Chen Zhu, "Transforming optical Vernier effect into coherent microwave interference towards highly sensitive optical fiber sensing," Photonics Res. 13, 875 (2025)
    Download Citation