• Laser & Optoelectronics Progress
  • Vol. 59, Issue 22, 2210001 (2022)
Chao Wang1,*, Yongshun Wang1, and Fan Di2
Author Affiliations
  • 1School of Electronic and Information Engineering, Lanzhou Jiaotong University, Lanzhou 730070, Gansu , China
  • 2Diaoyutai Hotel Administration, Ministry of Foreign Affairs, Beijing 100080, China
  • show less
    DOI: 10.3788/LOP202259.2210001 Cite this Article Set citation alerts
    Chao Wang, Yongshun Wang, Fan Di. Fast and Automatic Fuzzy C-Means Clustering Color Image Segmentation Algorithm[J]. Laser & Optoelectronics Progress, 2022, 59(22): 2210001 Copy Citation Text show less
    References

    [1] Wang J, Zhang X Y, Cai Y F et al. CT image segmentation method combining wavelet transform and RSF model[J]. Acta Optica Sinica, 40, 2110003(2020).

    [2] Wang Y T, Li Q. Terahertz holographic reconstructed image segmentation based on optimized region growth by evolutionary algorithm[J]. Chinese Journal of Lasers, 47, 0814003(2020).

    [3] Feng B, Chen Y H, Liu Z S et al. Segmentation of breast cancer on DCE-MRI images with MRF energy and fuzzy speed function[J]. Acta Automatica Sinica, 46, 1188-1199(2020).

    [4] Mu H W, Guo Y, Quan X H et al. Magnetic resonance imaging brain tumor image segmentation based on improved U-net[J]. Laser & Optoelectronics Progress, 58, 0410022(2021).

    [5] Wang P Z. Pattern recognition with fuzzy objective function algorithms (James C. Bezdek)[J]. SIAM Review, 25, 442(1983).

    [6] Xu G M, Zhou J, Dong J W et al. Multivariate morphological reconstruction based fuzzy clustering with a weighting multi-channel guided image filter for color image segmentation[J]. International Journal of Machine Learning and Cybernetics, 11, 2793-2806(2020).

    [7] Tian M L, Yang J M. Pre-processing of froth image of coal flotation based on weighted fuzzy C-mean clustering by one-dimensional histogram[C], 396-400(2012).

    [8] Szilagyi L, Benyo Z, Szilagyi S M et al. MR brain image segmentation using an enhanced fuzzy C-means algorithm[C], 724-726(2003).

    [9] Cai W L, Chen S C, Zhang D Q. Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation[J]. Pattern Recognition, 40, 825-838(2007).

    [10] Lei T, Jia X H, Zhang Y N et al. Superpixel-based fast fuzzy C-means clustering for color image segmentation[J]. IEEE Transactions on Fuzzy Systems, 27, 1753-1766(2019).

    [11] Wang Q S, Wang X P, Fang C et al. Robust fuzzy c-means clustering algorithm with adaptive spatial & intensity constraint and membership linking for noise image segmentation[J]. Applied Soft Computing, 92, 106318(2020).

    [12] Lei T, Liu P, Jia X H et al. Automatic fuzzy clustering framework for image segmentation[J]. IEEE Transactions on Fuzzy Systems, 28, 2078-2092(2019).

    [13] Rodriguez A, Laio A. Clustering by fast search and find of density peaks[J]. Science, 344, 1492-1496(2014).

    [14] Achanta R, Shaji A, Smith K et al. SLIC superpixels compared to state-of-the-art superpixel methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34, 2274-2282(2012).

    [15] Li Z Q, Chen J S. Superpixel segmentation using linear spectral clustering[C], 1356-1363(2015).

    [16] Comaniciu D, Meer P. Mean shift analysis and applications[C], 1197-1203(1999).

    [17] Hu Z W, Zou Q, Li Q Q. Watershed superpixel[C], 349-353(2015).

    [18] Arbeláez P, Maire M, Fowlkes C et al. Contour detection and hierarchical image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33, 898-916(2011).

    [19] Xia G S, Hu J W, Hu F et al. AID: a benchmark data set for performance evaluation of aerial scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 55, 3965-3981(2017).

    [20] Shotton J, Winn J, Rother C et al. TextonBoost: joint appearance, shape and context modeling for multi-class object recognition and segmentation[M]. Leonardis A, Bischof H, Pinz A. Computer vision-ECCV 2006. Lecture notes in computer science, 3951, 1-15(2006).